
 509

1 Invoking LiveCycle ES Using Web Services

Most LiveCycle ES services located in the service container are configured to expose a web service, with
full support for web service definition language (WSDL) generation. That is, you can create proxy objects
that are able to consume the native soap stack of a given service. As a result, LiveCycle ES services can
exchange and process the following SOAP messages:

SOAP request: Sent to a LiveCycle ES service by a client application requesting an action.

SOAP response: Sent to a client application by a LiveCycle ES service after a SOAP request is processed.

Using web services, you can perform the same operations that you can by using the Java API. A benefit of
using web services to invoke LiveCycle ES services is that you can create a client application in a
development environment that supports SOAP and are not bound to a specific development environment
or programming language. For example, you can create a client application using Microsoft Visual Studio
.NET and C# as the programming language.

LiveCycle ES services are exposed over the SOAP protocol and are WSI Basic Profile 1.1 compliant. Web
Services Interoperability (WSI) is an open standards organization that promotes web service
interoperability across platforms. For information, see http://www.ws-i.org/.

LiveCycle ES supports the following web service standards:

Encoding: Supports only document and literal encoding (which is the preferred encoding according to
the WSI Basic Profile). (See Invoking LiveCycle ES using Base64 Encoding.)

SOAP with attachments: Supports both MIME and DIME (Direct Internet Message Encapsulation).
These protocols are standard ways of sending attachments over SOAP. DIME is used primarily by .NET
applications. (See Invoking LiveCycle ES using DIME.)

WS-Security: Supports a user name password token profile, which is a standard way of sending user
names and passwords as part of the WS Security SOAP header. LiveCycle ES also supports HTTP basic
authentication. (See Passing credentials using WS-Security headers.)

Note: LiveCycle ES does not expose the MIME field as the swaRef type in a service WSDL.

Note: This section uses Apache Axis to generate Java proxy classes that can be used to invoke LiveCycle ES
services. However, you can use other tools such as JAX-WS. If you use this tool, then you should use
version JAX-WS 2.1 or later. For information about using Apache Axis to generate Java proxy classes,
see Creating Java proxy classes using Apache Axis that uses encoding.

Note: LiveCycle ES does not support the MTOM.

To invoke LiveCycle ES services using a web service, typically you create a proxy library that consumes the
service WSDL. You can retrieve a service WDSL by specifying the following URL definition (items in square
brackets are optional):

http://<your_serverhost>:<your_port>/soap/services/<service_name>?wsdl[&vers
ion=<version>][&async=true|false][lc_version=<lc_version>]

http://www.ws-i.org
http://www.adobe.com/devnet/livecycle/articles/passing_credentials.html
http://www.adobe.com/devnet/livecycle/articles/passing_credentials.html
http://www.adobe.com/devnet/livecycle/articles/passing_credentials.html

<<Define the ProductName variable>> Invoking LiveCycle ES Using Web Services
<<Define the GuideName variable>> 510

where:

your_serverhost represents the IP address of the J2EE application server hosting LiveCycle ES.

your_port represents the HTTP port that the J2EE application server uses.

service_name represents the service name.

version represents the target version of a service (the latest service version is used by default).

async specify the value true to enable additional operations for asynchronous invocation (false by
default).

lc_version represents the version of LiveCycle ES that you want to invoke. (See Accessing new
functionality using web services.)

To retrieve a WSDL that belongs to a short-lived or long-lived process created in Workbench ES, replace
[service name] with the name of the process. For example, to retrieve the WSDL that belongs to the
EncryptDocument short-lived process, specify the following WSDL definition:

http://<your_serverhost>:<your_port>/soap/services/EncryptDocument?wsdl

Note: For information about the example EncryptDocument short-lived process, see Short lived process
example.

The following table lists service WSDL definitions (assuming that LiveCycle ES is deployed on the local host
and the post is 8080).

Service WSDL definition

Assembler http://localhost:8080/soap/services/
AssemblerService?wsdl

Barcoded Forms http://localhost:8080/soap/services/
BarcodedFormsService?wsdl

Convert PDF http://localhost:8080/soap/services/
ConvertPDFService?wsdl

Distiller service http://localhost:8080/soap/services/
DistillerService?wsdl

DocConverter service http://localhost:8080/soap/services/
DocConverterService?WSDL

Encryption http://localhost:8080/soap/services/
EncryptionService?wsdl

Forms http://localhost:8080/soap/services/
FormsService?wsdl

Form Data Integration http://localhost:8080/soap/services/
FormDataIntegration?wsdl

Generate PDF http://localhost:8080/soap/services/
GeneratePDFService?wsdl

Generate3d PDF http://localhost:8080/soap/services/
Generate3dPDFService?WSDL

Output http://localhost:8080/soap/services/
OutputService?wsdl

<<Define the ProductName variable>> Invoking LiveCycle ES Using Web Services
<<Define the GuideName variable>> 511

Note: You can also view WSDL files that are located in the LiveCycle ES SDK directory at [install
directory]\Adobe\LiveCycle8\Livecycle_ES_SDK\wsdl.

Services that cannot be accessed using web services

Although most LiveCycle ES services can be accessed using a WSDL, some LiveCycle ES services cannot be
accessed in this manner. The following LiveCycle ES services cannot be invoked using web services:

● Service registry

● Component registry

● Job Manager service operation named createJob

Web service data types

One of the most important data types exposed in a web service is a BLOB type. This type is a mapping of
the com.adobe.idp.Document class, which is used to send and retrieve binary data (for example, PDF
files, Word documents, XML, and so on) to and from LiveCycle ES services. The BLOB type is defined in a
service WSDL as follows:

<complexType name="BLOB">
 <sequence>
 <element maxOccurs="1" minOccurs="0" name="contentType" type="xsd:string" />
 <element maxOccurs="1" minOccurs="0" name="binaryData"
type="xsd:base64Binary" />
 <element maxOccurs="1" minOccurs="0" name="attachmentID" type="xsd:string"
/>
 <element maxOccurs="1" minOccurs="0" name="remoteURL" type="xsd:string" />
 </sequence>
</complexType>

If a LiveCycle ES service operation requires a BLOB type as an input value, you must create an instance of
the BLOB type in your application logic and assign values to fields that belong to the BLOB instance as
follows:

PDF Utilities http://localhost:8080/soap/services/
PDFUtilityService?wsdl

Reader Extensions http://localhost:8080/soap/services/
ReaderExtensionsService?wsdl

Repository http://localhost:8080/soap/services/
RepositoryService?wsdl

Rights Management http://localhost:8080/soap/services/
RightsManagementService?wsdl

Signature http://localhost:8080/soap/services/
SignatureService?wsdl

XMP Utilities http://localhost:8080/soap/services/
XMPUtilityService?wsdl

Service WSDL definition

<<Define the ProductName variable>> Invoking LiveCycle ES Using Web Services
<<Define the GuideName variable>> 512

1. To pass data as text encoded in a Base64 format, set the data in the BLOB.binaryData field and set
the data type in the MIME format (for example application/pdf) in the BLOB.contentType field.
(See Invoking LiveCycle ES using Base64 Encoding.)

2. To pass data in a MIME or DIME attachment, attach the data to the SOAP request using the SOAP
framework's native API and set the attachment ID in the BLOB.attachmentID field. (See Invoking
LiveCycle ES using DIME.)

3. If data is hosted on a web server and accessible over an HTTP URL, set the HTTP URL in the
BLOB.remoteURL field. Note that this URL should be accessible from the server. (See Invoking
LiveCycle ES using BLOB Data over HTTP.)

If the service returns a BLOB type, by default, the result data is hosted on the application server and its
HTTP URL is returned in the BLOB.remoteURL field. The only exception is when the service takes a BLOB
instance as an input value and the data is supplied with a MIME or DIME attachment. In this situation, the
result data is returned as a MIME or DIME attachment (the output attachment type will match the input
attachment type), and the output BLOB.attachmentID field contains the result attachment identifier.

To override the default output BLOB behavior, extend the SOAP endpoint URL with a suffix as follows:

http://<your_serverhost>:<your_port>/soap/services/<service
name>?blob=base64|dime|mime|http

1. Set the blob suffix to base64 to return the data in the BLOB.binaryData field.

2. Set the blob suffix to dime or mime to return the data as a corresponding attachment type with the
attachment identifier returned in the BLOB.attachmentID field. Use the SOAP framework's
proprietary API to read the data from the attachment.

3. Set the blob suffix to http to keep the data on the application server and return the URL pointing to the
data in the BLOB.remoteURL field.

Caution: It is strongly recommended that you do not exceed 30 MB when populating a BLOB object by
invoking its setBinaryData method. Otherwise, you may encounter an OutOfMemory
exception.

The following table lists Java data types and shows the corresponding web service data type.

Java data type Web service data type

java.lang.byte[] xsd:base64Binary

java.lang.Boolean xsd:boolean

<<Define the ProductName variable>> Invoking LiveCycle ES Using Web Services
<<Define the GuideName variable>> 513

java.util.Date The DATE type, which is defined in a service WSDL as follows:

<complexType name="DATE">

 <sequence>

 <element maxOccurs="1" minOccurs="0" name="date"
type="xsd:dateTime" />

 <element maxOccurs="1" minOccurs="0" name="calendar"
type="xsd:dateTime" />

 </sequence>

</complexType>

If a LiveCycle ES service operation takes a java.util.Date value as input, the
SOAP client application must pass the date in the DATE.date field. Setting the
DATE.calendar field in this case causes a run-time exception. If the service
returns a java.util.Date, then the date is retuned in the DATE.date field.

java.util.Calendar The DATE type, which is defined in a service WSDL as follows:

<complexType name="DATE">

 <sequence>

 <element maxOccurs="1" minOccurs="0" name="date"
type="xsd:dateTime" />

 <element maxOccurs="1" minOccurs="0" name="calendar"
type="xsd:dateTime" />

 </sequence>

</complexType>

If a LiveCycle ES service operation takes a java.util.Calendar value as input,
the SOAP client application must pass the date in the DATE.caledendar field.
Setting the DATE.date field in this case causes a run-time exception. If the service
returns a java.util.Calendar, then the date is returned in the
DATE.calendar field.

java.math.BigDecimal xsd:decimal

com.adobe.idp.Document BLOB

java.lang.Double xsd:double

java.lang.Float xsd:float

java.lang.Integer xsd:int

java.util.List MyArrayOf_xsd_anyType

java.lang.Long xsd:long

Java data type Web service data type

<<Define the ProductName variable>> Invoking LiveCycle ES Using Web Services
<<Define the GuideName variable>> 514

java.util.Map The apachesoap:Map, which is defined in a service WSDL as follows:

<schema elementFormDefault="qualified"
targetNamespace="http://xml.apache.org/xml-soap"
xmlns="http://www.w3.org/2001/XMLSchema">

 <complexType name="mapItem">

 <sequence>

 <element name="key" nillable="true" type="xsd:anyType"/>

 <element name="value" nillable="true"
type="xsd:anyType"/>

 </sequence>

 </complexType>

 <complexType name="Map">

 <sequence>

 <element maxOccurs="unbounded" minOccurs="0" name="item"
type="apachesoap:mapItem"/>

 </sequence>

 </complexType>

 </schema>

The Map is represented as a sequence of key/value pairs.

java.lang.Object xsd:anyType

java.lang.Short xsd:short

java.lang.String xsd:string

Java data type Web service data type

<<Define the ProductName variable>> Invoking LiveCycle ES Using Web Services
<<Define the GuideName variable>> 515

Accessing multiple services using web services

Due to namespace conflicts, data objects cannot be shared between multiple service WSDLs. Different
services may share data types and, therefore the services share the definition of these types in the WSDLs.
For example, you cannot add two .NET client assemblies that contain a BLOB data type to the same .NET
client project. If you attempt to do so, you will generate a compile error.

The following list specifies data types that cannot be shared between multiple service WSDLs:

● User

● Principals

● PrincipalReference

● Groups

● Roles

● BLOB

org.w3c.dom.Document The XML type, which is defined in a service WSDL as follows:

<complexType name="XML">

 <sequence>

 <element maxOccurs="1" minOccurs="0" name="document"
type="xsd:string" />

 <element maxOccurs="1" minOccurs="0" name="element"
type="xsd:string" />

 </sequence>

</complexType>

If a LiveCycle ES service operation takes an org.w3c.dom.Document value as
input, the SOAP client application must pass the XML data in the XML.document
field. Setting the XML.element field in this case will cause a run-time exception. If
the service returns an org.w3c.dom.Document, then the XML data is returned in
the XML.document field.

org.w3c.dom.Element The XML type, which is defined in a service WSDL as follows:

<complexType name="XML">

 <sequence>

 <element maxOccurs="1" minOccurs="0" name="document"
type="xsd:string" />

 <element maxOccurs="1" minOccurs="0" name="element"
type="xsd:string" />

 </sequence>

</complexType>

If a LiveCycle ES service operation takes an org.w3c.dom.Element as input, the
SOAP client application must pass the XML data in the XML.element field. Setting
the XML.document field in this case will cause a run-time exception. If the service
returns an org.w3c.dom.Element, then the XML data is retuned in the
XML.element field.

Java data type Web service data type

<<Define the ProductName variable>> Invoking LiveCycle ES Using Web Services
<<Define the GuideName variable>> 516

To avoid this problem, it is recommended that the services WSDL’s are compiled together with a special
/sharetypes command line option. For example:

wsdl /sharetypes
http://localhost:8080/soap/services/RightsManagementService?wsdl
http://localhost:8080/soap/services/DirectoryManagerService?wsdl

This command produces a single CS file containing no duplicate data types.

Accessing new functionality using web services

Some LiveCycle ES 8.2 services introduced new functionality that can be accessed using web services. For
example, the Encryption service introduced the ability to encrypt a PDF document with a certificate. For
information, see Encrypting PDF Documents with Certificates.

When generating a client stub using LiveCycle ES 8.2 service WSDL definition, the available WSDL remains
compatible with LiveCycle ES 8.0.1.1 so client applications generated for previous LiveCycle ES versions
work without making changes. For example, to access the Encryption service WSDL, specify the following
WSDL definition:

http://localhost:8080/soap/services/EncryptionService?wsdl

However, to access new functionality introduced in LiveCycle ES 8.2, you specify the lc_version
attribute in the WSDL definition. For example, to access new Encryption service functionality, specify the
following WSDL definition:

http://localhost:8080/soap/services/EncryptionService?wsdl&lc_version=8.2.1

Note: When setting the lc_version attribute, ensure that you use three digets. For example, 8.2.1 is
equal to version 8.2.

 558

1 Invoking LiveCycle ES using Base64 Encoding

You can invoke a LiveCycle ES service using base64 encoding. Base64 encoding refers to encoding
attachments that are sent with a web service invocation request. That is, BLOB data is base64 encoded, not
the entire SOAP message.

This section discusses invoking the following LiveCycle ES short-lived process, named EncryptDocument,
using base64 encoding.

When this process is invoked, it performs the following actions:

1. Obtains the unsecure PDF document that is passed to the service as an attachment. This action is based
on the SetValue operation.

2. Encrypts the PDF document with a password. This action is based on the PasswordEncryptPDF
operation.

3. Saves the password-encrypted PDF document as a PDF file to the local file system. This process also
returns the encrypted PDF document as an output value. This action is based on the WriteDocument
operation.

This section discusses creating Java proxy classes that invoke the above service as well as a Microsoft .NET
client assembly. Both Java proxy classes and the Microsoft client assembly uses base64 encoding.

Note: This process is not based on an existing LiveCycle ES process. To following along with the code
examples that are related to this section, create a process named EncryptDocument using
Workbench ES. For information, see LiveCycle Workbench ES Help.

Note: Before reading this section, it is recommended that you are familiar with invoking LiveCycle ES
using SOAP. (See Invoking LiveCycle ES Using Web Services.)

Note: All web service Quick Starts in Programming with LiveCycle ES use base64 encoding.

Creating a .NET client assembly that uses base 64 encoding
You can create a .NET client assembly to invoke a LiveCycle ES service from a Microsoft Visual Studio .NET
project. To create a .NET client assembly that uses base64 encoding, perform the following steps:

1. Create a proxy class based on a LiveCycle ES invocation URL.

www.adobe.com/go/learn_lc_workbench_82

<<Define the ProductName variable>> Invoking LiveCycle ES using Base64 Encoding
<<Define the GuideName variable>> Creating a proxy class 559

2. Create a new Microsoft Visual Studio .NET project that will produce the .NET client assembly.

Creating a proxy class
You can create a proxy class that is used to create the .NET client assembly by using a tool that
accompanies Microsoft Visual Studio. The name of the tool is wsdl.exe and is located in the Microsoft
Visual Studio installation folder. To create a proxy class, open the command prompt and navigate to the
folder that contains the wsdl.exe file. Enter the following command at the command prompt:

wsdl
http://localhost:8080/soap/services/EncryptDocument?WSDL&lc_version=8.2.1

By default, this tool creates a CS file in the same folder that is based on the name of the WSDL. In this
situation, it creates a CS file named EncryptDocumentService.cs. You use this CS file to create a proxy object
that lets you invoke the service that was specified in the invocation URL.

Amend the URL in the proxy class to include ?blob=base64 to ensure that the BLOB object returns
binary data; that is, in the proxy class, locate the following line of code:

"http://localhost:8080/soap/services/EncryptDocument";

and change it to:

"http://localhost:8080/soap/services/EncryptDocument?blob=base64";

Note: For more information about the wsdl.exe tool, see the MSDN Help.

Note: This section uses EncryptDocument as an example. If you are creating a .NET client assembly for
another LiveCycle ES service, ensure that you replace EncryptDocument with the name of the
LiveCycle ES service for which you are building a client assembly.

Note: Instead of modifying the generated code, the URL can be set using service.URL property. For
example, you can assign
http://localhost:8080/soap/services/EncryptDocument?blob=base64 to this
property. Setting this property is used in the code example that accompanies the DIME section. (See
Invoking LiveCycle ES using DIME.)

Developing the .NET client assembly
Create a new Visual Studio Class Library project that produces a .NET client assembly. The CS file that you
created using wsdl.exe can be imported into this project. This project produces a DLL file that you can use
in other Visual Studio .NET projects to invoke a service.

➤ To develop the .NET client assembly:

1. Start Microsoft Visual Studio .NET.

2. Create a new Class Library project and name it DocumentService.

3. Import the CS file that you created using wsdl.exe.

4. In the Project menu, select Add Reference.

5. In the Add Reference dialog box, select System.Web.Services.dll.

6. Click Select and then click OK.

<<Define the ProductName variable>> Invoking LiveCycle ES using Base64 Encoding
<<Define the GuideName variable>> Invoking a service using a .NET client assembly that uses base64 encoding 560

7. Compile and build the project.

Note: This procedure creates a .NET client assembly named DocumentService.dll that you can use to send
SOAP requests to the EncryptDocument service.

Caution: Make sure that you added ?blob=base64 to the URL in the proxy class that is used to create
the .NET client assembly. Otherwise, you cannot retrieve binary data from the BLOB object. (See
Web service data types.)

Referencing the .NET client assembly

Place your newly-created .NET client assembly on the computer where you are developing your client
application. After you place the .NET client assembly in a directory, you can reference it from a project. You
must also reference the System.Web.Services library from your project. If you do not reference this
library, you cannot use the .NET client assembly to invoke a service.

➤ To reference the .NET client assembly:

1. In the Project menu, select Add Reference.

2. Click the .NET tab.

3. Click Browse and locate the DocumentService.dll file.

4. Click Select and then click OK.

Invoking a service using a .NET client assembly that uses base64 encoding
You can invoke the EncryptDocument service (that was built in Workbench ES) using a .NET client
assembly that uses base64 encoding. (See Invoking LiveCycle ES using Base64 Encoding.)

To invoke the EncryptDocument service, perform the following steps:

1. Create a Microsoft .NET client assembly that consumes the EncryptDocument service WSDL. For
information, see Creating a .NET client assembly that uses base 64 encoding.

2. Reference the Microsoft .NET client assembly. For information, see Referencing the .NET client
assembly.

3. Using the Microsoft .NET client assembly, create an EncryptDocumentService object by invoking
its default constructor.

4. Set the EncryptDocumentService object’s Credentials property with a
System.Net.NetworkCredential object. Within the System.Net.NetworkCredential
constructor, specify a LiveCycle ES user name and the corresponding password. You must set
authentication values to enable your .NET client application to successfully exchange SOAP messages
with LiveCycle ES.

5. Create a BLOB object by using its constructor. The BLOB object is used to store a PDF document pass to
the EncryptDocument process.

6. Create a System.IO.FileStream object by invoking its constructor and passing a string value that
represents the file location of the PDF document and the mode in which to open the file.

<<Define the ProductName variable>> Invoking LiveCycle ES using Base64 Encoding
<<Define the GuideName variable>> Creating Java proxy classes using Apache Axis that uses encoding 561

7. Create a byte array that stores the content of the System.IO.FileStream object. You can determine
the size of the byte array by getting the System.IO.FileStream object’s Length property.

8. Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read
method and passing the byte array, the starting position, and the stream length to read.

9. Populate the BLOB object by assigning its binaryData property with the contents of the byte array.

10. Invoke the EncryptDocument process by invoking the EncryptDocumentService object’s invoke
method and passing the BLOB object that contains the PDF document. This process returns an
encrypted PDF document within a BLOB object.

11. Create a System.IO.FileStream object by invoking its constructor and passing a string value that
represents the file location of the password-encrypted document.

12. Create a byte array that stores the data content of the BLOB object that was returned by the
EncryptDocumentService object’s invoke method. Populate the byte array by getting the value
of the BLOB object’s binaryData data member.

13. Create a System.IO.BinaryWriter object by invoking its constructor and passing the
System.IO.FileStream object.

14. Write the byte array contents to a PDF file by invoking the System.IO.BinaryWriter object’s
Write method and passing the byte array.

View Quick Start

Creating Java proxy classes using Apache Axis that uses encoding
You can use the Apache Axis WSDL2Java tool to convert a service WSDL into Java proxy classes so that you
can invoke service operations. Using Apache Ant, you can generate Axis library files from the Repository
service WSDL that lets you invoke the Repository service. You can download Apache Axis at the URL
http://ws.apache.org/axis/.

The Apache Axis WSDL2Java tool generates JAVA files that contain methods that can be invoked by a
client application to send SOAP requests to a service. SOAP requests received by a service are decoded by
the same Axis-generated libraries and turned back into the methods and arguments they represent.

Generating Axis library files
Apache Ant generates Axis library files by referencing a service WSDL. You can generate Axis Java library
files by performing the following steps:

1. Install Apache Ant on the client computer. It is available at http://ant.apache.org/bindownload.cgi.

● Add the bin directory to your class path.

● Set the ANT_HOME environment variable to the directory where you installed Ant.

2. Install Apache Axis 1.4 on the client computer. It is available at http://ws.apache.org/axis/.

3. Set up the class path to use the Axis JAR files in your web service client, as described in the Axis
installation instructions at http://ws.apache.org/axis/java/install.html.

http://ws.apache.org/axis/
http://ant.apache.org/bindownload.cgi
http://ws.apache.org/axis/
http://ws.apache.org/axis/java/install.html

<<Define the ProductName variable>> Invoking LiveCycle ES using Base64 Encoding
<<Define the GuideName variable>> Generating Axis library files 562

4. Use the Apache WSDL2Java tool in Axis to generate Java proxy classes. You must create an Ant build
script to accomplish this task. The following script is a sample Ant build script named build.xml:

<?xml version="1.0"?>
<project name="axis-wsdl2java">

<path id="axis.classpath">
<fileset dir="C:\axis-1_4\lib" >

<include name="**/*.jar" />
</fileset>
</path>

<taskdef resource="axis-tasks.properties" classpathref="axis.classpath" />

<target name="repository-wsdl2java-client" description="task">
<axis-wsdl2java

output="C:\JavaFiles"
testcase="false"
serverside="false"
verbose="true"
username="administrator"
password="password"

url="http://localhost:8080/soap/services/EncryptDocument?WSDL&lc_version=8.2
.1" >
</axis-wsdl2java>
</target>

</project>

Within this Ant build script, notice that the url property is set to reference the EncryptDocument
WSDL running on localhost. The username and password properties must be set to a valid
LiveCycle ES user name and password.

5. Create a BAT file to execute the Ant build script. The following command can be located within a BAT
file that is responsible for executing the Ant build script:

ant -buildfile "build.xml" repository-wsdl2java-client

This Ant build script generates JAVA files that can invoke the EncryptDocument service. The JAVA files are
written to the C:\JavaFiles folder as specified by the output property. To successfully invoke the
EncryptDocument service, you must import all of these JAVA files into your class path. By default, these
files belong to a Java package named com.adobe.idp.services. It is recommended that you place all
of these CLASS files into a JAR file and then import the JAR file into your client application’s class path.

Note: There are different ways to put .CLASS files into a JAR. One way is using a Java IDE like Eclipse. Create
a new Java project and create a com.adobe.idp.services package (all .CLASS files belong to
this package). Next import all the .CLASS files into the package. Finally, export the project as a JAR
file.

Amend the URL in the EncryptDocumentServiceLocator class to include ?blob=base64 to ensure
that the BLOB object returns binary data. That is, in the EncryptDocumentServiceLocator class,
locate the following line of code:

http://localhost:8080/soap/services/EncryptDocument;

and change it to:

<<Define the ProductName variable>> Invoking LiveCycle ES using Base64 Encoding
<<Define the GuideName variable>> Invoking a service using Axis-generated library files that use base64 encoding 563

http://localhost:8080/soap/services/EncryptDocument?blob=base64;

Instead of modifying the generated code, the URL can be set using service.URL property. For example,
you can assign http://localhost:8080/soap/services/EncryptDocument?blob=base64 to
this property. Setting this property is used in the code example that accompanies the DIME section. (See
Invoking LiveCycle ES using DIME.)

You must also add the following Axis JAR files to your Java project’s class path:

● activation.jar

● axis.jar

● commons-codec-1.3.jar

● commons-collections-3.1.jar

● commons-discovery.jar

● commons-logging.jar

● dom3-xml-apis-2.5.0.jar

● jai_imageio.jar

● jaxen-1.1-beta-9.jar

● jaxrpc.jar

● log4j.jar

● mail.jar

● saaj.jar

● wsdl4j.jar

● xalan.jar

● xbean.jar

● xercesImpl.jar

These JAR files are in the [install directory]/Adobe/LiveCycle8/sdk/lib/thirdparty directory.

Caution: Make sure that you added ?blob=base64 to the URL in the
EncryptDocumentServiceLocator class. Otherwise, you cannot retrieve binary data from
the BLOB object. For information, see Web service data types.

Invoking a service using Axis-generated library files that use base64
encoding

You can invoke the EncryptDocument service (that was built in Workbench ES) using Axis-generated
library files that uses base64 encoding. (See Invoking LiveCycle ES using Base64 Encoding.)

To invoke the EncryptDocument service using Axis-generated library files, perform the following steps:

1. Create Java proxy classes that consume the EncryptDocument service WSDL. (See Creating Java proxy
classes using Apache Axis that uses encoding.)

2. Include the Java proxy and Axis classes into your class path.

3. Create an EncryptDocumentServiceLocator object by using its constructor.

<<Define the ProductName variable>> Invoking LiveCycle ES using Base64 Encoding
<<Define the GuideName variable>> Invoking a service using Axis-generated library files that use base64 encoding 564

4. Create an EncryptDocument object by invoking the EncryptDocumentServiceLocator object’s
getEncryptDocument method.

5. Set authentication values by setting the javax.xml.rpc.Stub.USERNAME_PROPERTY and
javax.xml.rpc.Stub.PASSWORD_PROPERTY values with valid LiveCycle ES user name and
password values.

((javax.xml.rpc.Stub)encryptionClient)._setProperty(javax.xml.rpc.Stub.
USERNAME_PROPERTY, "administrator");
((javax.xml.rpc.Stub)encryptionClient)._setProperty(javax.xml.rpc.Stub.
PASSWORD_PROPERTY, "password");

6. Retrieve the PDF document to send to theEncryptDocument process by creating a
java.io.FileInputStream object by using its constructor and passing a string value that specifies
the location of the PDF document.

7. Create a byte array and populate it with the contents of the java.io.FileInputStream object.

8. Create a BLOB object by using its constructor.

9. Populate the BLOB object by invoking its setBinaryData method and passing the byte array.

10. Invoke the EncryptDocument process by invoking the EncryptDocument object’s invoke method
and passing the BLOB object that contains the PDF document. This process returns an encrypted PDF
document within a BLOB object.

11. Create a byte array to store the data stream that represents the encrypted PDF document by invoking
the BLOB object’s (ensure you use the BLOB object returned by the invoke method) getBinaryData
method.

12. Create a java.io.File object by using its constructor. This object will represent the encrypted PDF
document.

13. Create a java.io.FileOutputStream object by usings it constructor and passing the java.io.File
object.

14. Invoke the java.io.FileOutputStream object’s write method and pass the byte array that
contains the data stream that represents the encrypted PDF document.

View Quick Start

 565

1 Invoking LiveCycle ES using DIME

You can invoke LiveCycle ES services using SOAP with attachments. LiveCycle ES supports both MIME and
DIME (Direct Internet Message Encapsulation) web service standards. DIME enables binary attachments,
such as PDF documents, to be sent along with invocation requests rather than encoding the attachment
which is the case when using base64 encoding, which may increase the attachment size. (See Invoking
LiveCycle ES using Base64 Encoding.)

This section discusses invoking the following LiveCycle ES short-lived process, named EncryptDocument,
using DIME.

When this process is invoked, it performs the following actions:

1. Obtains the unsecure PDF document that is passed to the service as an attachment. This action is based
on the SetValue operation.

2. Encrypts the PDF document with a password. This action is based on the PasswordEncryptPDF
operation.

3. Saves the password-encrypted PDF document as a PDF file to the local file system. This process also
returns the encrypted PDF document as an output value. This action is based on the WriteDocument
operation.

Note: This process is not based on an existing LiveCycle ES process. To following along with the code
examples that are related to this section, create a process named EncryptDocument using
Workbench ES. For information, see LiveCycle Workbench ES Help.

Note: Before reading this section, it is recommended that you are familiar with invoking LiveCycle ES
using SOAP. (See Invoking LiveCycle ES Using Web Services.)

Creating a .NET project that uses DIME
To create a .NET project that is able to invoke a LiveCycle ES service using DIME, perform the following
tasks:

● Install Web Services Enhancements 2.0 on your development computer.

● From within your .NET project, create a web reference to the LiveCycle ES service.

www.adobe.com/go/learn_lc_workbench_82

<<Define the ProductName variable>> Invoking LiveCycle ES using DIME
<<Define the GuideName variable>> Installing Web Services Enhancements 2.0 566

Installing Web Services Enhancements 2.0
Install Web Services Enhancements 2.0 on your development computer and integrate it with Microsoft
Visual Studio .NET. You can download Web Services Enhancements 2.0 from the following URL:

www.microsoft.com/downloads/search.aspx

From this web page, search for Web Services Enhancements 2.0 and download it onto your development
computer. This places a file named Microsoft WSE 2.0 SPI.msi on your computer. Run the install program
and follow the online directions.

Note: Web Services Enhancements 2.0 supports DIME. The supported version of Microsoft Visual Studio is
2003 when working with Web Services Enhancements 2.0. Web Services Enhancements 3.0 does
not support DIME, but supports MTOM. However, LiveCycle ES 8.2 does not supprt MTOM.

Creating a web reference to a LiveCycle ES service
After you install Web Services Enhancements 2.0 on your development computer and create a Microsoft
.NET project, create a web reference to the LiveCycle ES service that you want to invoke using DIME. For
example, to create a web reference to the EncryptDocument process and assuming that LiveCycle ES is
installed on the local computer, specify the following URL:

http://localhost:8080/soap/services/EncryptDocument?WSDL

After you create a web reference, the following two proxy data types are available for you to use within
your .NET project EncryptDocumentService and EncryptDocumentServiceWse. To invoke
EncryptDocument using DIME, use the EncryptDocumentServiceWse type.

Note: Before creating a web reference to the LiveCycle ES service, ensure that you reference Web Services
Enhancements 2.0 in your project. (See Installing Web Services Enhancements 2.0.)

➤ To reference the WSE library:

1. In the Project menu, select Add Reference.

2. In the Add Reference dialog box, select Microsoft.Web.Services2.dll.

3. Select System.Web.Services.dll.

4. Click Select. and then click OK.

➤ To create a web reference to a LiveCycle ES service:

1. In the Project menu, select Add Web Reference.

2. In the URL dialog box, specify the URL to the LiveCycle ES service.

3. Click Go.

4. Click Add Reference.

Note: Ensure that you enable your .NET project to use the WSE library. From within the Project Explorer,
right-click the project name and select enable WSE 2.0. Ensure that the check box on the dialog box
that appears is selected.

<<Define the ProductName variable>> Invoking LiveCycle ES using DIME
<<Define the GuideName variable>> Invoking a service using DIME in a .NET project 567

Invoking a service using DIME in a .NET project
You can invoke a LiveCycle ES service using DIME. To fully explain how to do this task, this section
describes how to invoke the EncryptDocument process. This process accepts an unsecure PDF document
to encrypt and returns a password-encrypted PDF document.

To invoke the EncryptDocument process using DIME, perform the following steps:

1. Create a Microsoft .NET project that enables you to invoke a LiveCycle ES service using DIME. Ensure
that you include Web Services Enhancements 2.0 and create a web reference to the LiveCycle ES
service. (See Creating a .NET project that uses DIME.)

2. After setting a web reference to the EncryptDocument process, create an
EncryptDocumentServiceWse object by using its default constructor.

3. Set the EncryptDocumentServiceWse object’s Credentials data member with a
System.Net.NetworkCredential value that specifies theLiveCycle ES user name and password
value.

4. Create a Microsoft.Web.Services2.Dime.DimeAttachment object by using its constructor
and passing the following values:

● A string value that specifies GUID value. You can obtain a GUID value by invoking the
System.Guid.NewGuid.ToString method.

● A string value that specifies the content type. Because this process requires a PDF document,
specify application/pdf.

● A TypeFormat enumeration value. Specify TypeFormat.MediaType.

● A string value that specifies the location of the PDF document to pass to the LiveCycle ES process.

5. Create a BLOB object by using its constructor.

6. Add the DIME attachment to the BLOB object by assigning the
Microsoft.Web.Services2.Dime.DimeAttachment object’s Id data member value to the
BLOB object’s attachmentID data member.

7. Invoke the EncryptDocumentServiceWse.RequestSoapContext.Attachments.Add method
and pass the Microsoft.Web.Services2.Dime.DimeAttachment object.

8. Invoke the EncryptDocument process by invoking the EncryptDocumentServiceWse object’s
invoke method and passing the BLOB object that contains the DIME attachment. This process returns
an encrypted PDF document within a BLOB object.

9. Obtain the attachment identifier value by getting the value of the returned BLOB object’s
attachmentID data member.

10. Iterate through the attachments located in
EncryptDocumentServiceWse.ResponseSoapContext.Attachments and use the
attachment identifier value to obtain the encrypted PDF document.

11. Obtain a System.IO.Stream object by getting the value of the Attachment object’s Stream data
member.

12. Create a byte array and pass that byte array to the ystem.IO.Stream object’s Read method. This
method populates the byte array with a data stream that represents the encrypted PDF document.

<<Define the ProductName variable>> Invoking LiveCycle ES using DIME
<<Define the GuideName variable>> Creating Java proxy classes using Apache Axis that uses DIME 568

13. Create a System.IO.FileStream object by invoking its constructor and passing a string value that
represents an PDF file location. This object represents the encrypted PDF document.

14. Create a System.IO.BinaryWriter object by invoking its constructor and passing the
System.IO.FileStream object.

15. Write the contents of the byte array to the PDF file by invoking the System.IO.BinaryWriter
object’s Write method and passing the byte array.

View Quick Start

Creating Java proxy classes using Apache Axis that uses DIME
You can use the Apache Axis WSDL2Java tool to convert a service WSDL into Java proxy classes so that you
can invoke service operations. Using Apache Ant, you can generate Axis library files from a LiveCycle ES
service WSDL that lets you invoke the service. You can download Apache Axis at the URL
http://ws.apache.org/axis/.

The Apache Axis WSDL2Java tool generates JAVA files that contain methods that can be invoked by a
client application to send SOAP requests to a service. SOAP requests received by a service are decoded by
the same Axis-generated libraries and turned back into the methods and arguments they represent.

Note: To create Java proxy classes that uses DIME to invoke a LiveCycle ES service, follow the same process
that is described in the Invoking LiveCycle ES using Base64 Encoding section. The only difference is
that you do not have to amend the URL to include ?blob=base64 to ensure that the BLOB object
returns binary data.

To invoke the EncryptDocument service using Axis-generated library files and using DIME, perform the
following steps:

1. Create Java proxy classes that consume the EncryptDocument service WSDL. For information, see
Creating Java proxy classes using Apache Axis that uses DIME.

2. Include the Java proxy classes into your class path.

3. Create an EncryptDocumentServiceLocator object by using its constructor.

4. Create an URL object by using its constructor and passing a string value that specifies the LiveCycle ES
service WSDL definition. Ensure that you specify ?blob=dime at the end of the SOAP endpoint URL.
For example, http://localhost:8080/soap/services/EncryptDocument?blob=dime.

5. Create an EncryptDocumentSoapBindingStub object by invoking its constructor and passing the
EncryptDocumentServiceLocator object and the URL object.

6. Set the LiveCycle ES user name and password value by invoking the
EncryptDocumentSoapBindingStub object’s setUsername and setPassword methods.

encryptionClientStub.setUsername("administrator");
encryptionClientStub.setPassword("password");

7. Retrieve the PDF document to send to the EncryptDocument service by creating a java.io.File
object and passing a string value that specifies the PDF document location.

8. Create a javax.activation.DataHandler object by using its constructor and passing a
javax.activation.FileDataSource object. The javax.activation.FileDataSource

http://ws.apache.org/axis/

<<Define the ProductName variable>> Invoking LiveCycle ES using DIME
<<Define the GuideName variable>> Creating Java proxy classes using Apache Axis that uses DIME 569

object can be created by using its constructor and passing the java.io.File object that represents
the PDF document.

9. Create an org.apache.axis.attachments.AttachmentPart object by using its constructor
and passing the javax.activation.DataHandler object.

10. Attach the attachment by invoking the EncryptDocumentSoapBindingStub object’s
addAttachment method and passing the org.apache.axis.attachments.AttachmentPart
object.

11. Create a BLOB object by usings its constructor. Populate the BLOB object with the attachment
identifier value by invoking the BLOB object’s setAttachmentID method and passing the
attachment identifier value. This value can be obtained by invoking the
org.apache.axis.attachments.AttachmentPart object’s getContentId method.

12. Invoke the EncryptDocument process by invoking the EncryptDocumentSoapBindingStub
object’s invoke method and passing the BLOB object that contains the DIME attachment. This process
returns an encrypted PDF document within a BLOB object.

13. Obtain the attachment identifier value by invoking the returned BLOB object’s getAttachmentID
method. This method returns a string value that represents the identifier value of the returned
attachment.

14. Retrieve the attachments by invoking the EncryptDocumentSoapBindingStub object’s
getAttachments method. This method returns an array of Objects that represent the attachments.

15. Iterate through the attachments (the Object array) and use the attachment identifier value to obtain
the encrypted PDF document. Each element is an
org.apache.axis.attachments.AttachmentPart object.

16. Obtain the javax.activation.DataHandler object associated with the attachment by invoking
the org.apache.axis.attachments.AttachmentPart object’s getDataHandler method.

17. Obtain a java.io.FileStream object by invoking the javax.activation.DataHandler
object’s getInputStream method.

18. Create a byte array and pass that byte array to the java.io.FileStream object object’s read
method. This method populates the byte array with a data stream that represents the encrypted PDF
document.

19. Create a java.io.File object by using its constructor. This object will represent the encrypted PDF
document.

20. Create a java.io.FileOutputStream object by usings it constructor and passing the
java.io.File object.

21. Invoke the java.io.FileOutputStream object’s write method and pass the byte array that
contains the data stream that represents the encrypted PDF document.

View Quick Start

 424

1 Invoking LiveCycle ES using BLOB Data over HTTP

You can invoke LiveCycle ES services using web services and passing BLOB data over HTTP. Passing BLOB
data over HTTP is an alternative web service technique that you can use when you do not want to use
base64 encoding, DIME, or MIME. For example, you can pass data over HTTP in a Microsoft .NET project
that uses Web Service Enhancement 3.0, which does not support DIME or MIME. When using BLOB data
over HTTP, input data is uploaded before the LiveCycle ES service is invoked.

This section discusses invoking the following LiveCycle ES short-lived process, named EncryptDocument,
by passing BLOB data over HTTP.

When this process is invoked, it performs the following actions:

1. Obtains the unsecure PDF document that is passed to the service as an attachment. This action is based
on the SetValue operation.

2. Encrypts the PDF document with a password. This action is based on the PasswordEncryptPDF
operation.

3. Saves the password-encrypted PDF document as a PDF file to the local file system. This process also
returns the encrypted PDF document as an output value. This action is based on the WriteDocument
operation.

Note: This process is not based on an existing LiveCycle ES process. To following along with the code
examples that are related to this section, create a process named EncryptDocument using
Workbench ES. (See LiveCycle Workbench ES Help.)

Note: Before reading this section, it is recommended that you are familiar with invoking LiveCycle ES
using SOAP. (See Invoking LiveCycle ES Using Web Services.)

Creating a .NET client assembly that uses data over HTTP
To create a client assembly that uses data over HTTP, follow the same process as specified in the Creating a
.NET client assembly that uses base 64 encoding section. However, amend the URL in the proxy class to
include ?blob=http instead of ?blob=base64 to ensure that data is passed over HTTP. That is, in the
proxy class, locate the following line of code:

"http://localhost:8080/soap/services/EncryptDocument";

www.adobe.com/go/learn_lc_workbench_82

<<Define the ProductName variable>> Invoking LiveCycle ES using BLOB Data over HTTP
<<Define the GuideName variable>> Invoking a service using a .NET client assembly that uses BLOB data over HTTP 425

and change it to:

"http://localhost:8080/soap/services/EncryptDocument?blob=http";

Referencing the .NET client assembly

Place your newly-created .NET client assembly on the computer where you are developing your client
application. After you place the .NET client assembly in a directory, you can reference it from a project. You
must also reference the System.Web.Services library from your project. If you do not reference this
library, you cannot use the .NET client assembly to invoke a service.

➤ To reference the .NET client assembly:

1. In the Project menu, select Add Reference.

2. Click the .NET tab.

3. Click Browse and locate the DocumentService.dll file.

4. Click Select and then click OK.

Invoking a service using a .NET client assembly that uses BLOB data over
HTTP

You can invoke the EncryptDocument service (that was built in Workbench ES) using a .NET client
assembly that uses data over HTTP. (See Invoking LiveCycle ES using BLOB Data over HTTP.)

To invoke the EncryptDocument service, perform the following steps:

5. Reference the Microsoft .NET client assembly. For information, see Referencing the .NET client
assembly.

6. Using the Microsoft .NET client assembly, create an EncryptDocumentService object by invoking
its default constructor.

7. Set the EncryptDocumentService object’s Credentials property with a
System.Net.NetworkCredential object. Within the System.Net.NetworkCredential
constructor, specify a LiveCycle ES user name and the corresponding password. You must set
authentication values to enable your .NET client application to successfully exchange SOAP messages
with LiveCycle ES.

8. Create a BLOB object by using its constructor. The BLOB object is used pass data to the
EncryptDocument process.

9. Assign a string value to the BLOB object’s remoteURL data member that specifies the URI location of a
PDF document to pass to the EncryptDocument service.

10. Invoke the EncryptDocument process by invoking the EncryptDocumentService object’s invoke
method and passing the BLOB object. This process returns an encrypted PDF document within a BLOB
object.

11. Create a System.UriBuilder object by using its constructor and passing the value of the returned
BLOB object’s remoteURL data member.

<<Define the ProductName variable>> Invoking LiveCycle ES using BLOB Data over HTTP
<<Define the GuideName variable>> Creating Java proxy classes using Apache Axis that uses BLOB data over HTTP 426

12. Convert the System.UriBuilder object to a System.IO.Stream object. (The C# quick start that
follows this list illustrates how to perform this task.)

13. Create a byte array and populate it with the data located in the System.IO.Stream object.

14. Create a System.IO.BinaryWriter object by invoking its constructor and passing the
System.IO.FileStream object.

15. Write the byte array contents to a PDF file by invoking the System.IO.BinaryWriter object’s
Write method and passing the byte array.

View Quick Start

Creating Java proxy classes using Apache Axis that uses BLOB data
over HTTP

You can use the Apache Axis WSDL2Java tool to convert a service WSDL into Java proxy classes so that you
can invoke service operations. Using Apache Ant, you can generate Axis library files from a LiveCycle ES
service WSDL that lets you invoke the service. You can download Apache Axis at the URL
http://ws.apache.org/axis/.

Note: To use Java proxy classes that uses data over HTTP to invoke a LiveCycle ES service, follow the same
process that is described in the Invoking LiveCycle ES using Base64 Encoding section. The only
difference is that you have to amend the URL to include ?blob=http.

To invoke the EncryptDocument service using Axis-generated library files and SOAP over HTTP, perform the
following steps:

1. Create Java proxy classes that consume the EncryptDocument service WSDL.

2. Include the Java proxy and Axis classes into your class path.

3. Create an EncryptDocumentServiceLocator object by using its constructor.

4. Create an EncryptDocument object by invoking the EncryptDocumentServiceLocator object’s
getEncryptDocument method.

5. Set authentication values by setting the javax.xml.rpc.Stub.USERNAME_PROPERTY and
javax.xml.rpc.Stub.PASSWORD_PROPERTY values with valid LiveCycle ES user name and
password values.

((javax.xml.rpc.Stub)encryptionClient)._setProperty(javax.xml.rpc.Stub.
USERNAME_PROPERTY, "administrator");
((javax.xml.rpc.Stub)encryptionClient)._setProperty(javax.xml.rpc.Stub.
PASSWORD_PROPERTY, "password");

6. Create a BLOB object by using its constructor.

7. Populate the BLOB object by invoking its setRemoteURL method and passing a string value that
specifies the URI location of a PDF document to pass to the EncryptDocument service.

8. Invoke the EncryptDocument process by invoking the EncryptDocument object’s invoke method
and passing the BLOB object that contains the PDF document. This process returns an encrypted PDF
document within a BLOB object.

http://ws.apache.org/axis/

<<Define the ProductName variable>> Invoking LiveCycle ES using BLOB Data over HTTP
<<Define the GuideName variable>> Creating Java proxy classes using Apache Axis that uses BLOB data over HTTP 427

9. Create a byte array to store the data stream that represents the encrypted PDF document by invoking
the BLOB object’s (ensure you use the BLOB object returned by the invoke method) getBinaryData
method.

10. Create a java.io.File object by using its constructor. This object will represent the encrypted PDF
document.

11. Create a java.io.FileOutputStream object by usings it constructor and passing the java.io.File
object.

12. Invoke the java.io.FileOutputStream object’s write method and pass the byte array that
contains the data stream that represents the encrypted PDF document.

View Quick Start

 428

1 Invoking Long-Lived Processes

You can programmatically invoke long-lived processes that were created in Workbench ES. A long-lived
process is invoked asynchronously and cannot be invoked synchronously due to the following factors:

● A process can span a significant amount of time.

● A process can span organizational boundaries.

● A process needs external input in order for it to finish. For example, consider a situation where a form is
sent to a manager, who may be out of the office. In this situation, the process will not finish until the
manager returns and fills out the form.

When a long-lived process is invoked, LiveCycle ES creates an invocation identifier value as part of creating
a record that tracks the status of the long-lived process and is stored in the LiveCycle ES database. Using
the invocation identifier value, you can track the status of the long-lived process. (This section discusses
how to get the invocation identifier value and how to use it to track the status of the long-lived operation.)
You can use the process invocation identifier value to perform Process Manager operations such as
terminating a running process instance. (See Terminating Process Instances.)

Note: LiveCycle ES does not create an invocation identifier value nor create a record when a short-lived
process is invoked or when a service operation is invoked such the Encryption service’s
EncryptwithPassword operation. As a result, you cannot obtain an invocation identifier value
when invoking a service operation that is not part of a long-lived process.

When you invoke a service, you can specify the version that you want to invoke. The following choices are
available:

No version: If you do not specify version information, the invocation request is routed to the latest
version of the service.

Explicit version: If you specify the explicit version, the invocation request is routed to that specific
version. Setting an explicit version enables a client application to request that it is always executed
against the version that works (the lowest risk). Most often, the preferable setting is the
originalVersion, whereby client applications can give the service container enough information to
ensure that the request is routed to a compatible version.

Original version: If you specify the service's original version, the invocation request is routed to the
service with the latest version that is compatible with the specified version. A service version is
considered compatible with an inbound request if it has the same major version number as specified in
the original version.

<<Define the ProductName variable>> Invoking Long-Lived Processes
<<Define the GuideName variable>> 429

For the purpose of this discussion, consider the following long-lived process named MortgageLoan -
Prebuilt.

This process is invoked when an applicant submits a loan form. If the loan request is greater than $500,000,
the loan request is sent to a bank manager; otherwise, the loan request is sent to a loan officer. However,
the process is not complete until either the loan officer or the bank manager approves or rejects the loan
request.

This process requires XML data as input. The name of the input XML parameter is inXML. The XML data is
used to populate the form that is sent to either the loan officer or bank manager, depending on the loan
amount. If the loan amount is greater, then $500,000.00, then the process is routed to the bank manager.
Otherwise, it is routed to the loan officer.

For the purposes of this discussion, assume that the following XML data is used as input to this process.

<MortgageApp>
<MortgageFields>
 <PropertyPrice>700000</PropertyPrice>
 <DownPayment>100000</DownPayment>
 <Mortgage>600000</Mortgage>
 <Term>20</Term>
 <InterestRate>6.0</InterestRate>
</MortgageFields>
<ApplicantFields>
 <LastName>White</LastName>
 <FirstName>Sam</FirstName>
 <PhoneNumber>555-5555</PhoneNumber>
 <SSN>123-456-678</SSN>
</ApplicantFields>
</MortgageApp>

<<Define the ProductName variable>> Invoking Long-Lived Processes
<<Define the GuideName variable>> Summary of steps 430

In the GetForm information step (the second operation in the process shown in the previous illustration),
an XFAForm variable named LoanForm is created. This variable specifies the location of the form design
that is used. The XML data that is required as input to this process is merged with the specified form
design. The following XPATH expression, which is set in Workbench ES, is responsible for merging the XML
data that is passed to this process with the form design.

/process_data/LoanForm/object/data/xdp/datasets/data = /process_data/inXML

After this step, the form (now populated with the XML data) is sent to either the loan officer or the bank
manager, who accesses the form in Workspace ES. This section discusses how to programmatically invoke
this process as well as creating the XML data that must be sent (the quick starts associated with this
section dynamically creates the XML data that is shown in this section).

Note: The MortgageLoan - Prebuilt process is an example process that is available with LiveCycle ES.
However, it was modified to be programmatically invoked. This process accepts an input value
named inXML whose data type is XML. The XML data is assigned to the LoanForm process variable
whose data type is XFAForm using the expression specified in this section.

View summary of steps

Summary of steps
To invoke a long-lived process, perform the following steps:

1. Include project files.

2. Create a service client.

3. Prepare input values.

4. Invoke the service operation.

5. Retrieve the results.

Include project files

Include necessary files into your development project. If you are creating a client application using Java,
then include the necessary JAR files. If you are using web services, then make sure that you include the
proxy files.

The following JAR files must be added to your project’s classpath:

● adobe-livecycle-client.jar

● adobe-usermanager-client.jar

● adobe-jobmanager-client-sdk.jar

● adobe-utilities.jar (Required if LiveCycle ES is deployed on JBoss)

● jbossall-client.jar (Required if LiveCycle ES is deployed on JBoss)

For information about the location of these JAR files, see Including LiveCycle ES library files.

View Java walkthrough View web service walkthrough

<<Define the ProductName variable>> Invoking Long-Lived Processes
<<Define the GuideName variable>> Summary of steps 431

Create a service client

Before you can programmatically invoke a long-lived process, you must create a
com.adobe.idp.dsc.clientsdk.ServiceClient object.

If you are using web services to invoke a long-lived process, the name of the service client is based on the
long-lived process name. For example, if the name of the long-lived process is MortgageLoan -
Prebuilt, then the name of the service client is MortgageLoanPrebuiltService.

Prepare input values

You must prepare input values that are required by the long-lived process. This step is specific to the
process. That is, if the process requires four input values, then you must prepare four input values to pass
to the process.

If you are using the Java Invocation API to invoke a long-lived process, you must pass required input values
by using a java.util.HashMap object. For each parameter to pass to a service, invoke the
java.util.HashMap object’s put method and specify the name-value pair that is required by the
long-lived process. You must specify the exact name of the parameter that belongs to the long-lived
process and a corresponding value. For example, if the name of the input parameter is inXML and requires
XML data, you can create an org.w3c.dom.Document object that represents the required XML data.

Note: This topic uses the MSXML2.DOMDocument50Class class to create the XML data in the web
service example. To uses this data type, ensure that you reference the Microsoft XML V5 library in
your Visual Studio project.

Invoke the service operation

To invoke a long-lived process, specify the name of the long-lived process operation. Typically the name of
a long-lived process is named invoke. When invoking the service operation, you must pass required input
values. For example, to invoke the long-lived process introduced in this section, you must pass XML data.
This XML data is merged with the loan form that is sent to either the bank manager or the loan officer.

Note: If you are using web services, the name of the operation is invoke_Async.

Retrieve the results

Because a long-lived process is invoked asynchronously, an identifier value that is used to obtain the status
of the long-lived process can be retrieved. To obtain the status of a long-lived process, you use classes that
belong to the com.adobe.idp.jobmanager Java package (this is why you must include the
adobe-jobmanager-client-sdk.jar file in your class path). For information about these classes, see
LiveCycle ES API References.

<<Define the ProductName variable>> Invoking Long-Lived Processes
<<Define the GuideName variable>> Invoking a long-lived process using the Java invocation API 432

Invoking a long-lived process using the Java invocation API
To invoke a long-lived process using the Java invocation API, perform the following tasks:

1. Include project files

Include client JAR files, such as the adobe-livecycle-client.jar, in your Java project’s class path. (See
Including LiveCycle ES library files.)

2. Create a service client

● Create a ServiceClientFactory object that contains connection properties. (See Setting
connection properties.)

● Create a ServiceClient object by using its constructor and passing the
ServiceClientFactory object. A ServiceClient object lets you invoke a service operation. It
handles tasks such as locating, dispatching, and routing invocation requests

3. Prepare input values

● Create a java.util.HashMap object by using its constructor.

● Invoke the java.util.HashMap object’s put method for each input parameter to pass to the
long-lived process.

Note: In the Java quick start that accompanies this section, an org.w3c.dom.Document object that
represents the XML data to pass to the process is created.

4. Invoke the service operation

● Create an InvocationRequest object by invoking the ServiceClientFactory object’s
createInvocationRequest method and passing the following values:

● A string value that specifies the name of the long-lived process to invoke. To invoke the
long-lived process introduced in this section, specify MortgageLoan - Prebuilt.

● A string value that represents the name of the process operation. Typically the name of a
long-lived process operation is invoke.

● The java.util.HashMap object that contains the parameter values that the service operation
requires.

● A Boolean value that specifies false, which creates an asynchronous request (this is required to
invoke a long-lived operation).

● Send the invocation request to the service by invoking the ServiceClient object’s invoke
method and passing the InvocationRequest object. The invoke method returns an
InvocationReponse object.

5. Retrieve the results

● Get the invocation identifier of the long-lived operation by invoking the InvocationReponse
object’s getInvocationId method.

● Create a JobManager object by using its constructor and passing the ServiceClientFactory
object.

● Create a JobId object that represents the status of the long-lived process by using its constructor
and passing the invocation identifier value that was returned by the getInvocationId method.

● Check the status of the long-lived operation by invoking the JobManager object’s getStatus
method and passing the JobId object. This method returns a JobStatus object.

<<Define the ProductName variable>> Invoking Long-Lived Processes
<<Define the GuideName variable>> Invoking a long-lived process using the Java invocation API 433

● Determine the status of the long-lived process by invoking the JobStatus object’s
getStatusCode method. If the long-lived operation completed successfully, this method returns
JobStatus.JOB_STATUS_COMPLETED. If the long-lived operation did not complete successfully,
this method returns JobStatus.JOB_STATUS_FAILED. For information about other status
values, see the LiveCycle ES API References.

● Dispose of the job by invoking the JobManager object’s disposeJob method and passing the
JobId object that corresponds to the job you want to dispose.

View Quick Start

<<Define the ProductName variable>> Invoking Long-Lived Processes
<<Define the GuideName variable>> Invoking a long-lived process using the web service API 434

Invoking a long-lived process using the web service API
To invoke a long-lived process using the web service API, perform the following tasks:

1. Include project files

● Create a Microsoft .NET client assembly that consumes the MortgageLoan - Prebuilt service WSDL.
(See Creating a .NET client assembly that uses base 64 encoding.)

● Reference the Microsoft .NET client assembly. (See Referencing the .NET client assembly.)

Note: This section assumes that you create a process named MortgageLoan - Prebuilt that accepts XML
data as input.

2. Create a service client

● Using the Microsoft .NET client assembly, create a MortgageLoanPrebuiltService object by
invoking its default constructor.

● Set the MortgageLoanPrebuiltService object’s Credentials data member with a
System.Net.NetworkCredential value that specifies the user name and password value.

3. Prepare input values

Prepare input values that are required to invoke the long-lived process. For example, to invoke the
MortgageLoan - Prebuilt long-lived process, create XML data.

Note: In the C# quick start that accompanies this section, a MSXML2.DOMDocument50Class object is
used to create the XML data that is passed to the process. To uses this data type, ensure that you
reference the Microsoft XML V5 library in your Visual Studio project.

4. Invoke the service operation

● Create an XML object by using its constructor. This data type is created from the MortgageLoan -
Prebuilt service WSDL.

● Populate the XML object with XML data by assigning its document data member with the value of
the MSXML2.DOMDocument50Class object’s xml data member.

● Invoke the process by invoking the MortgageLoanPrebuiltService object’s invoke_Async
method and passing the XML object.

5. Retrieve the results

● Create a Microsoft .NET client assembly that consumes the JobManager service WSDL. (See Creating
a .NET client assembly that uses base 64 encoding.)

● Reference the Microsoft .NET client assembly. (See Referencing the .NET client assembly.)

● Create a JobManagerService object by using its constructor.

● Create a JobId object by using its constructor.

● Set the JobId object’s id data memeber with the return value of the
MortgageLoanPrebuiltService object’s invoke_Async method.

● Assign the value true to the JobId object’s persistent data memeber.

● Create a JobStatus object by invoking the JobManagerService object ‘s getStatus method
and passing the JobId object.

● Get the status value by retrieving the value of the JobStatus object’s statusCode data member.

<<Define the ProductName variable>> Invoking Long-Lived Processes
<<Define the GuideName variable>> Invoking a long-lived process using the web service API 435

View Quick Start

<<Define the ProductName variable>> Invoking Long-Lived Processes
<<Define the GuideName variable>> Invoking a long-lived process using LiveCycle Remoting 436

Invoking a long-lived process using LiveCycle Remoting
To start a LiveCycle ES process from a Flex application, you synchronously invoke the invoke operation of
the process and provide the input parameter(s) that the operation expects. For information about a
long-lived process, see Understanding processes.

Note: These instructions assume that you have already created a process.

You can invoke a long-lived process by performing the following tasks:

1. Use the LiveCycle Administration Console to create a remoting endpoint for the process.

2. Create an mx:RemoteObject instance through either ActionScript or MXML. Associate it with the
remoting endpoint for the process.

3. Set up a ChannelSet, add a channel to communicate with the LiveCycle ES server, and associate it with
the mx:RemoteObject instance.

4. Call the service’s setCredentials method to specify the user ID and password.

5. Collect the data required by the process and store it as an XML object, in a format that matches the XML
used by the process.

6. Send the invocation request to the service by using the RemoteObject instance to call the invoke
method and passing the variable that contains the XML data.

View Quick Start

 23

1 Invocation API Quick Starts

The following Quick Starts are available for programmatically invoking services:

Note: Quick Starts located in Programming with LiveCycle ES are based on LiveCycle ES being deployed on
JBoss Application Server and the Microsoft Windows operating system. However, if you are using
another operating system, such as UNIX, replace Windows-specific paths with paths that are
supported by the applicable operating system. Likewise, if you are using another J2EE application
server, ensure that you specify valid connection properties. (See Setting connection properties.)

Quick Start: Invoking a long-lived process using the Invocation API

The following Java code example invokes a long-lived process named MortgageLoan - Prebuilt. Notice that
this process is invoked asynchronously. This quick start contains a user-defined method named
GetDataSource that creates XML data that is passed to the process. The XML data is created using a
org.w3c.dom.Document instance. (See Invoking Long-Lived Processes.)

/*
 * This Java Quick Start uses the following JAR files
 * 1. adobe-jobmanager-client-sdk.jar
 * 2. adobe-livecycle-client.jar
 * 3. adobe-usermanager-client.jar
 * 4. adobe-utilities.jar
 * 5. jbossall-client.jar (use a different JAR file if LiveCycle ES is not
deployed on JBoss)
 *

Description Remoting API Java API Web service API

Invoking a long-lived process
using the Java invocation API

N/A View Quick Start N/A

Invoking a long-lived process
using the web service API

N/A N/A View Quick Start

Invoking a long-lived process
using LiveCycle Remoting

View Quick Start N/A N/A

Invoking a service using a Java
client library

N/A View Quick Start N/A

Invoking LiveCycle ES using
DIME

N/A View Quick Start View Quick Start

Invoking LiveCycle ES using
Base64 Encoding

N/A View Quick Start View Quick Start

Invoking LiveCycle ES using
BLOB Data over HTTP

N/A View Quick Start View Quick Start

Invoking a service using
LiveCycle Remoting

View Quick Start N/A N/A

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 24

 * These JAR files are located in the following path:
 * <install directory>/Adobe/LiveCycle8/LiveCycle_ES_SDK/client-libs
 *
 * For complete details about the location of these JAR files,
 * see "Including LiveCycle ES library files" in
 * Programming with LiveCycle ES
 */
import com.adobe.idp.dsc.clientsdk.ServiceClientFactory;
import com.adobe.idp.dsc.clientsdk.ServiceClient;
import com.adobe.idp.dsc.clientsdk.ServiceClientFactoryProperties;
import com.adobe.idp.dsc.FaultResponse;
import com.adobe.idp.dsc.InvocationRequest;
import com.adobe.idp.dsc.InvocationResponse;
import java.util.Properties;
import java.util.Map;
import java.util.HashMap;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Element;
import com.adobe.idp.jobmanager.client.JobManager;
import com.adobe.idp.jobmanager.common.JobId;
import com.adobe.idp.jobmanager.common.JobStatus;

public class InvokeLongLived {
public static void main(String[] args) {

try{
//Set connection properties required to invoke LiveCycle ES
Properties connectionProps = new Properties();

connectionProps.setProperty(ServiceClientFactoryProperties.DSC_DEFAULT_EJB_E
NDPOINT, "jnp://localhost:1099");

connectionProps.setProperty(ServiceClientFactoryProperties.DSC_TRANSPORT_PRO
TOCOL,ServiceClientFactoryProperties.DSC_EJB_PROTOCOL);

connectionProps.setProperty(ServiceClientFactoryProperties.DSC_SERVER_TYPE,
"JBoss");

connectionProps.setProperty(ServiceClientFactoryProperties.DSC_CREDENTIAL_US
ERNAME, "administrator");

connectionProps.setProperty(ServiceClientFactoryProperties.DSC_CREDENTIAL_PA
SSWORD, "password");

//Create a ServiceClientFactory object
ServiceClientFactory myFactory =

ServiceClientFactory.createInstance(connectionProps);

//Create a ServiceClient object
ServiceClient myServiceClient = myFactory.getServiceClient();

//Create a Map object to store the parameter value
Map params = new HashMap();

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 25

//Populate the Map object with a parameter value
//required to invoke the MortgageLoan long-lived process
//This process requires XML data
org.w3c.dom.Document inXML = GetDataSource();
params.put("inXML", inXML);

//Create an InvocationRequest object
InvocationRequest request = myFactory.createInvocationRequest(

"MortgageLoan - Prebuilt", //Specify the long-lived process name
"invoke", //Specify the operation name
params, //Specify input values
false); //Create an asynchronous request

//Send the invocation request to the long-lived process and
//get back an invocation response object
InvocationResponse response = myServiceClient.invoke(request);
String invocationId = response.getInvocationId();

//Create a Job Manager object to check the
//results of an asynchronous request
JobManager jobManager = new JobManager(myFactory);
JobStatus jobStatus = null;

//Create a JobID object that represents the status of the
//long-lived operation
JobId myJobId = new JobId(invocationId);

//Wait and check the results of the long-lived operation
for (int i=0;i<5;i++) {

Thread.sleep(60000);
jobStatus = jobManager.getStatus(myJobId);
System.out.println("Job Status: " + jobStatus.getStatusCode());
if (jobStatus.getStatusCode()== JobStatus.JOB_STATUS_COMPLETED ||

jobStatus.getStatusCode()==JobStatus.JOB_STATUS_FAILED) {
break;
}

}//end of for loop

if (jobStatus.getStatusCode()==JobStatus.JOB_STATUS_COMPLETED) {
System.out.println("INVOCATION COMPLETED SUCCESSFULLY!");
InvocationResponse jobResponse = jobManager.getResponse(myJobId);
jobManager.disposeJob(myJobId);

 } else if (jobStatus.getStatusCode()==JobStatus.JOB_STATUS_FAILED) {
System.out.println("INVOCATION COMPLETED FAILED!");
FaultResponse _fr = jobManager.getFaultResponse(new

JobId(invocationId));
System.out.println(_fr.getStackTrace());
jobManager.disposeJob(myJobId);

 } else {
System.out.println("INVOCATION STATUS " + jobStatus.getStatusCode()

+ " NOT COMPLETE.");
 }

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 26

 }catch (Exception e) {

e.printStackTrace();
}

}
 //Create XML data to pass to the long-lived process
 private static org.w3c.dom.Document GetDataSource()
 {

org.w3c.dom.Document document = null;

try
{

//Create DocumentBuilderFactory and DocumentBuilder objects
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

//Create a new Document object
document = builder.newDocument();

//Create MortgageApp - the root element in the XML
Element root = (Element)document.createElement("MortgageApp");
document.appendChild(root);

//Create Mortgage fields and append it to MortgageApp
Element MortgageFields =

(Element)document.createElement("MortgageFields");
root.appendChild(MortgageFields);

//Create ApplicantFields and append it to MortgageApp
Element ApplicantFields =

(Element)document.createElement("ApplicantFields");
root.appendChild(ApplicantFields);

//Create the PropertyPrice element - a child to Mortgage fields
Element PropertyPrice =

(Element)document.createElement("PropertyPrice");
PropertyPrice.appendChild(document.createTextNode("700000"));
MortgageFields.appendChild(PropertyPrice);

//Create the DownPayment element - a child to Mortgage fields
Element DownPayment

=(Element)document.createElement("DownPayment");
DownPayment.appendChild(document.createTextNode("100000"));
MortgageFields.appendChild(DownPayment);

//Create the Term element - a child to Mortgage fields
Element Term = (Element)document.createElement("Term");
Term.appendChild(document.createTextNode("20"));
MortgageFields.appendChild(Term);

//Create the InterestRate element - a child to Mortgage fields
Element InterestRate =

(Element)document.createElement("InterestRate");

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 27

InterestRate.appendChild(document.createTextNode("6.0"));
MortgageFields.appendChild(InterestRate);

//Create the LastName element - a child to ApplicantFields fields
Element LastName = (Element)document.createElement("LastName");
LastName.appendChild(document.createTextNode("White"));
ApplicantFields.appendChild(LastName);

//Create the FirstName element - a child to ApplicantFields fields
Element FirstName = (Element)document.createElement("FirstName");
FirstName.appendChild(document.createTextNode("Sam"));
ApplicantFields.appendChild(FirstName);

//Create the PhoneNumber element - a child to ApplicantFields fields
Element PhoneNumber =

(Element)document.createElement("PhoneNumber");
PhoneNumber.appendChild(document.createTextNode("555-5555"));
ApplicantFields.appendChild(PhoneNumber);

//Create the SNN element - a child to ApplicantFields fields
Element SSN = (Element)document.createElement("SSN");
SSN.appendChild(document.createTextNode("123-456-678"));
ApplicantFields.appendChild(SSN);

 }
 catch (Exception e) {

 System.out.println("The following exception occurred:
"+e.getMessage());

 }
return document;
 }

 }

Quick Start: Invoking a long-lived process using the web service API

The following C# code example invokes a long-lived process named MortgageLoan - Prebuilt. Notice that
this process is invoked asynchronously. This quick start contains a user-defined method named
GetDataSource that creates XML data that is passed to the process. The XML data is created using a
MSXML2.DOMDocument50Class instance. (See Invoking Long-Lived Processes.)

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.IO;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {

 try

{

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 28

//Create a ReaderExtensionsServiceService client object
 MortgageLoanPrebuiltService mortgageClient = new
MortgageLoanPrebuiltService();
 mortgageClient.Credentials = new
System.Net.NetworkCredential("administrator", "password");

 //Create XML data to send to the long-lived process
 MSXML2.DOMDocument50Class xmlData = getXMLSource();
 XML inXML = new XML();
 inXML.document= xmlData.xml;

 //Invoke the long-lived process
 String invocationID = mortgageClient.invoke_Async(inXML);

 //Create a Job Manager object to check the
 //results of an asynchronous request
 JobManagerService jobManager = new JobManagerService();
 jobManager.Credentials = new System.Net.NetworkCredential(
 "administrator",
 "password"
);

 //Create a JobID object that represents the status of the
 //long-lived operation
 JobId jobId = new JobId();
 jobId.id = invocationID;
 jobId.persistent = true;
 JobStatus jobStatus = jobManager.getStatus(jobId);
 System.Int16 val2 = jobStatus.statusCode;
 Console.WriteLine("The value of the long-lived operation is
"+val2);
 }

 catch (System.Exception ee)
 {
 Console.WriteLine(ee.Message);
 }
 }

 //Create XML data to pass to the long-lived process
 static private MSXML2.DOMDocument50Class getXMLSource()
 {

 MSXML2.DOMDocument50Class myXMLDoc = new
MSXML2.DOMDocument50Class();
 MSXML2.IXMLDOMElement MortgageApp = null;
 MSXML2.IXMLDOMElement MortgageFields = null;
 MSXML2.IXMLDOMElement ApplicantFields = null;
 MSXML2.IXMLDOMElement PropertyPrice = null;
 MSXML2.IXMLDOMElement DownPayment = null;
 MSXML2.IXMLDOMElement Term = null;
 MSXML2.IXMLDOMElement Mortgage = null;
 MSXML2.IXMLDOMElement InterestRate = null;
 MSXML2.IXMLDOMElement LastName = null;
 MSXML2.IXMLDOMElement FirstName = null;

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 29

 MSXML2.IXMLDOMElement PhoneNumber = null;
 MSXML2.IXMLDOMElement SSN = null;

 //Create MortgageApp - the root element in the XML
 MortgageApp = myXMLDoc.createElement("MortgageApp");
 myXMLDoc.appendChild(MortgageApp);

 //Create Mortgage fields and append it to MortgageApp
 MortgageFields = myXMLDoc.createElement("MortgageFields");
 MortgageApp.appendChild(MortgageFields);

 //Create ApplicantFields element and append it to MortgageApp
 ApplicantFields = myXMLDoc.createElement("ApplicantFields");
 MortgageApp.appendChild(ApplicantFields);

 //Create the PropertyPrice element - a child to Mortgage fields
 PropertyPrice = myXMLDoc.createElement("PropertyPrice");
 PropertyPrice.appendChild(myXMLDoc.createTextNode("900000"));
 MortgageFields.appendChild(PropertyPrice);

 //Create the DownPayment element - a child to Mortgage fields
 DownPayment = myXMLDoc.createElement("DownPayment");
 DownPayment.appendChild(myXMLDoc.createTextNode("100000"));
 MortgageFields.appendChild(DownPayment);

 //Create the Mortgage element - a child to Mortgage fields
 Mortgage = myXMLDoc.createElement("Mortgage");
 Mortgage.appendChild(myXMLDoc.createTextNode("800000"));
 MortgageFields.appendChild(Mortgage);

 //Create the Term element - a child to Mortgage fields
 Term = myXMLDoc.createElement("Term");
 Term.appendChild(myXMLDoc.createTextNode("20"));
 MortgageFields.appendChild(Term);

 //Create the InterestRate element - a child to Mortgage fields
 InterestRate = myXMLDoc.createElement("InterestRate");
 InterestRate.appendChild(myXMLDoc.createTextNode("6.0"));
 MortgageFields.appendChild(InterestRate);

 //Create the LastName element - a child to ApplicantFields fields
 LastName = myXMLDoc.createElement("LastName");
 LastName.appendChild(myXMLDoc.createTextNode("MCCue"));
 ApplicantFields.appendChild(LastName);

 //Create the FirstName element - a child to ApplicantFields fields
 FirstName = myXMLDoc.createElement("FirstName");
 FirstName.appendChild(myXMLDoc.createTextNode("Kevin"));
 ApplicantFields.appendChild(FirstName);

 //Create the PhoneNumber element - a child to ApplicantFields fields
 PhoneNumber = myXMLDoc.createElement("PhoneNumber");
 PhoneNumber.appendChild(myXMLDoc.createTextNode("555-5555"));
 ApplicantFields.appendChild(PhoneNumber);

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 30

 //Create the SSN element - a child to ApplicantFields fields
 SSN = myXMLDoc.createElement("SSN");
 SSN.appendChild(myXMLDoc.createTextNode("123-456-678"));
 ApplicantFields.appendChild(SSN);

 return myXMLDoc;
 }

 }
}

Quick Start: Invoking a long-lived process using LiveCycle Remoting

The following MXML code example shows how a Flex™ client application can pass XML data that
represents a user’s mortgage application to a LiveCycle ES mortgage application process and start the
process.

When the Flex user submits the mortgage application, the LiveCycle ES process is invoked and populated
with the XML data from the Flex application. The XML data passed in the lc.invoke operation matches
the structure of the schema defined for the mortgage application process in LiveCycle ES. The createXML
method in the script block of the MXML provides the XML data to the process; it is stored in the variable
named xml, which is passed a parameter to the process in the lc.invoke({xmlData: xml}) method.
The XML elements in the createXML method are bound to the form fields in which the user enters data,
shown after this example.

Note: The following example requires additional mxml files to be included in your project. You can obtain
these mxml files at the following URL:
http://www.adobe.com/devnet/livecycle/quickstart/longlivedprocess/.

The complete application and source code are included in the LiveCycle ES installation.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="*"
creationPolicy="all"
 backgroundGradientColors="[#FFFFFF, #FFFFFF]"
creationComplete="initApp()">

 <mx:Script>
 <![CDATA[

 import mx.controls.Alert;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;
 import flash.net.navigateToURL;
 import mx.messaging.ChannelSet;
 import mx.messaging.channels.AMFChannel;
 import mx.collections.ArrayCollection;
 import mx.rpc.livecycle.JobId;
 import mx.rpc.livecycle.JobStatus;
 import mx.rpc.livecycle.DocumentReference;

 // Holds the job ID returned by LC.JobManager
 private var ji:JobId;

http://www.adobe.com/devnet/livecycle/quickstart/longlivedprocess/

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 31

 private function initApp():void
 {
 /* var amfChannel:AMFChannel = new AMFChannel(null,
 "http://10.60.147.127:9081/remoting/messagebroker/amf");
 */
 var amfChannel:AMFChannel = new AMFChannel(null,
 "http://10.60.84.33:8080/remoting/messagebroker/amf");
 //10.60.84.33:8080
 var channelSet:ChannelSet = new ChannelSet();
 channelSet.addChannel(amfChannel);
 lc.channelSet = channelSet;
 jmService.channelSet = channelSet;
 }

 private function submitApplication():void
 {
 var xml:XML = createXML();
 lc.invoke_Async({xmlData: xml});
 }

 // Handles async call that invokes the long-lived process
 private function resultHandler(event:ResultEvent):void
 {
 ji = event.result as JobId;
 bGetStatus.enabled = true;
 jobStatusDisplay.text = "Job Status ID: " + ji.jobId as String;
 }

 private function getStatus():void
 {
 jmService.getStatus(ji);
 }

 private function getStatusHandler(event:ResultEvent):void
 {
 var res:JobStatus = event.result as JobStatus;
 var resInt:int = res.statusCode;
 jobStatusDisplay.text = new String(res.toString());
 if(res.statusCode == JobStatus.JOB_STATUS_COMPLETED)
 {
 bGetResponse.enabled = true;
 }
 }

 // Get results (should only be called once you know that the job has
completed)
 private function getResp():void{
 jmService.getResponse(ji);
 }

 private function getResponseHandler(event:ResultEvent):void
 {
 var res:Object = event.result;
 var docRef:DocumentReference = res["pdfDoc"] as DocumentReference;
 //Alert.show(docRef.url);

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 32

 navigateToURL(new URLRequest(docRef.url as String), "_blank");
 }

 private function createXML():XML
 {
 var model:XML =

 <mortgageApplication>

 <applicant>
 <firstName>{applicant.firstName.text}</firstName>
 <lastName>{applicant.lastName.text}</lastName>
 <daytimePhone>{applicant.daytimePhone.text}</daytimePhone>
 <mobilePhone>{applicant.mobilePhone.text}</mobilePhone>
 <notifyMobile>{applicant.notifyMobile.selected}
 </notifyMobile>
 <email>{applicant.email.text}</email>
 <usCitizen>{applicant.citizenYes.selected}</usCitizen>
 </applicant>

 <property>
 <address>{property.address.text}</address>
 <city>{property.city.text}</city>
 <state>{property.stateCB.selectedLabel}</state>
 <zip>{property.zip.text}</zip>
 <type>
 {property.singleFamily.selected?"single
family":"condominium"}
 </type>
 </property>

 <mortgage>
 <price>{mortgage.price.value}</price>
 <downPayment>{mortgage.downPayment.value}</downPayment>
 <loanAmount>
 {mortgage.price.value - mortgage.downPayment.value}
 </loanAmount>
 <closingDate>
 {mortgage.closingDate.selectedDate}
 </closingDate>
 </mortgage>

 <employment/>
 <assets/>
 </mortgageApplication>

 var jobList:ArrayCollection = employment.jobList;
 var length:int = jobList.length;
 for (var i:int=0; i<length; i++) {
 var job:XML =
 <job>
 <company>{jobList[i].company}</company>
 <startDate>{jobList[i].startDate}</startDate>
 <endDate>{jobList[i].endDate}</endDate>
 <salary>{jobList[i].salary}</salary>

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 33

 </job>;
 model.employment[0].appendChild(job);
 }

 var accountList:ArrayCollection = assets.accountList;
 length = accountList.length;
 for (var j:int=0; j<length; j++) {
 var account:XML =
 <account>
 <bank>{accountList[j].bank}</bank>
 <accountId>{accountList[j].accountId}</accountId>
 <balance>{accountList[j].balance}</balance>
 </account>;
 model.assets.appendChild(account);
 }

 return model;
 }

 private function faultHandler(event:FaultEvent):void
 {
 Alert.show(
 event.fault.faultString + "\n" +
 event.fault.faultCode + "\n" +
 event.fault.faultDetail,
 "Error");
 }

]]>
 </mx:Script>

 <!-- <mx:Style source="main.css"/> -->
 <!-- Declare the RemoteObject and set its destination to the mortgage-app
remoting endpoint defined in LiveCycle. -->
 <mx:RemoteObject id="lc" destination="mortgage-app"
 result="resultHandler(event)" fault="faultHandler(event)"/>

 <mx:RemoteObject id="jmService" destination="LC.JobManager"
showBusyCursor="true" fault="faultHandler(event)">
 <mx:method name="getStatus" result="getStatusHandler(event)"/>
 <mx:method name="getResponse" result="getResponseHandler(event)"/>
 </mx:RemoteObject>

 <mx:Panel title="My Mortgage Application" backgroundAlpha="0.8"
backgroundImage="img/background.jpg">

 <mx:Accordion width="700" height="550" backgroundAlpha=".8">
 <Applicant id="applicant" label="Applicant Information"/>
 <Property id="property" label="Property Information"/>
 <MortgageInfo id="mortgage" label="Mortgage Information"/>
 <Employment id="employment" label="Employment History" />
 <Assets id="assets" label="Financial Assets"/>
 </mx:Accordion>

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 34

 <mx:ControlBar bottom="20">
 <mx:Button label="Submit Application"
icon="@Embed(’img/icon_save.png’)" click="submitApplication()"/>
 <mx:Button label="Get Status" id="bGetStatus" enabled="false"
icon="@Embed(’img/icon_save.png’)" click="getStatus()"/>
 <mx:Button label="Get Response" id="bGetResponse" enabled="false"
icon="@Embed(’img/icon_save.png’)" click="getResp()"/>
 </mx:ControlBar>
 <mx:Text id="jobStatusDisplay" width="300" />
 </mx:Panel>
</mx:Application>

The XML elements in the createXML method are bound to the form fields in which the user enters data,
such as the following form (contained in another MXML file in the application):

<?xml version="1.0" encoding="utf-8"?>
<mx:Form xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:StringValidator source="{firstName}" property="text"/>
<mx:SocialSecurityValidator source="{ssn}" property="text"/>
<mx:PhoneNumberValidator source="{daytimePhone}" property="text"/>
<mx:PhoneNumberValidator source="{mobilePhone}" property="text"/>
<mx:EmailValidator source="{email}" property="text"/>

<mx:FormItem label="First Name" required="true">
<mx:TextInput id="firstName" width="200"/>

</mx:FormItem>

<mx:FormItem label="Last Name" required="true">
<mx:TextInput id="lastName" width="200"/>

</mx:FormItem>

<mx:Spacer height="12"/>

<mx:FormItem label="Social Security Number" required="true">
<mx:TextInput id="ssn" width="200"/>

</mx:FormItem>

<mx:FormItem label="Daytime Phone Number" paddingTop="12" required="true">
<mx:TextInput id="daytimePhone" width="200"/>

</mx:FormItem>

<mx:FormItem label="Mobile Phone Number">
<mx:TextInput id="mobilePhone" width="200"/>
<mx:HBox horizontalGap="0">

<mx:CheckBox id="notifyMobile"/>
<mx:Text text="Notify me on this numberwhen the status of my mortgage

changes" width="200"/>
</mx:HBox>

</mx:FormItem>

<mx:Spacer height="12"/>

<mx:FormItem label="Email Address" required="true">
<mx:TextInput id="email" width="200"/>

</mx:FormItem>

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 35

<mx:Spacer height="12"/>

<mx:FormItem label="Are you a US citizen?">
<mx:RadioButton id="citizenYes" label="Yes" selected="true"

groupName="citizen"/>
<mx:RadioButton id="citizenNo" label="No" groupName="citizen"/>

</mx:FormItem>

</mx:Form>

For a complete set of form fields, see the Mortgage example.

Quick Start: Invoking the Repository service using a Java client library

The following Java code example adds a form design (an XDP file) to the repository by using the
Repository service’s Java client library.

import java.io.FileInputStream;
import java.util.Properties;
import com.adobe.idp.Document;
import com.adobe.idp.dsc.clientsdk.ServiceClientFactory;
import com.adobe.repository.bindings.dsc.client.ResourceRepositoryClient;
import com.adobe.repository.infomodel.Id;
import com.adobe.repository.infomodel.Lid;

import com.adobe.repository.infomodel.bean.RepositoryInfomodelFactoryBean;
import com.adobe.repository.infomodel.bean.Resource;
import com.adobe.repository.infomodel.bean.ResourceContent;

public class UploadForm {

public static void main(String[] args) {

try
{
//This example will upload an XDP file to the LiveCycle Repository
//Set LiveCycle ES service connection properties
Properties connectionProps = new Properties();
connectionProps.setProperty("DSC_DEFAULT_EJB_ENDPOINT",

"jnp://localhost:1099");
connectionProps.setProperty("DSC_TRANSPORT_PROTOCOL","EJB");
connectionProps.setProperty("DSC_SERVER_TYPE", "JBoss");
connectionProps.setProperty("DSC_CREDENTIAL_USERNAME", "administrator");
connectionProps.setProperty("DSC_CREDENTIAL_PASSWORD", "password");

ServiceClientFactory myFactory =
ServiceClientFactory.createInstance(connectionProps);

//Create a ResourceRepositoryClient object
ResourceRepositoryClient repositoryClient = new

ResourceRepositoryClient(myFactory);

//Specify the parent path

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 36

 String parentResourcePath = "/";

//Create a RepositoryInfomodelFactoryBean object
 RepositoryInfomodelFactoryBean infomodelFactory = new

RepositoryInfomodelFactoryBean(null);

//Create a Resource object to add to the Repository
 Resource newResource = (Resource) infomodelFactory.newImage(

new Id(),
new Lid(),
"Loan.xdp");

//Create a ResourceContent object that contains the content (file bytes)
ResourceContent content = (ResourceContent)

infomodelFactory.newResourceContent();

//Create a Document that references an XDP file
//to add to the Repository
FileInputStream myForm = new FileInputStream("C:\\Adobe\\Loan.xdp");
Document form = new Document(myForm);

//Set the description and the MIME type
content.setDataDocument(form);
content.setMimeType("application/vnd.adobe.xdp+xml");

//Assign content to the Resource object
newResource.setContent(content) ;

//Set a description of the resource
newResource.setDescription("An XDP file");

//Commit to repository, and update resource
//in memory (by assignment)
Resource addResource =

repositoryClient.writeResource(parentResourcePath, newResource);

//Get the description of the returned Resource object
System.out.println("The description of the new resource is

"+addResource.getDescription());

//Close the FileStream object
myForm.close();

} catch (Exception e) {

 e.printStackTrace();

 }
}

}

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 37

Quick Start: Invoking a service using base64 in a Microsoft .NET project

The following C# code example invokes a process named EncryptDocument from a Microsoft .NET project
using Base64 encoding. (See Invoking LiveCycle ES using Base64 Encoding.)

An unsecured PDF document based on a PDF file named map.pdf is passed to the LiveCycle ES process.
The process returns a password-encrypted PDF document that is saved as a PDF file named
mapEncrypt.pdf.

/*
 * Ensure that you create a .NET client assembly that uses
 * base64 encoding. This is required to populate a BLOB
 * object with data or retrieve data from a BLOB object.
 *
 * For information, see "Invoking LiveCycle ES using Base64 Encoding" in
 * Programming with LiveCycle ES
 */
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.IO;

namespace ConsoleApplication1
{

 class InvokeEncryptDocumentUsingBase64
 {

 const int BUFFER_SIZE = 4096;
 [STAThread]
 static void Main(string[] args)
 {

 try
 {
 String pdfFile = "C:\\Adobe\\map.pdf";
 String encryptedPDF = "C:\\Adobe\\mapEncrypt.pdf";

 //Create an EncryptDocumentServiceWse object and set
authentication values
 EncryptDocumentService encryptClient = new
EncryptDocumentService();
 encryptClient.Credentials = new
System.Net.NetworkCredential("administrator", "password");

 //Reference the PDF file to send to the EncryptDocument process
 FileStream fs = new FileStream(pdfFile, FileMode.Open);

 //Create a BLOB object
 BLOB inDoc = new BLOB();

 //Get the length of the file stream
 int len = (int)fs.Length;
 byte[] ByteArray = new byte[len];

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 38

 //Populate the byte array with the contents of the FileStream
object
 fs.Read(ByteArray, 0, len);
 inDoc.binaryData = ByteArray;

 //Invoke the EncryptDocument process
 BLOB outDoc = encryptClient.invoke(inDoc);

 //Populate a byte array with BLOB data
 byte[] outByteArray = outDoc.binaryData;

 //Create a new file named UsageRightsLoan.pdf
 FileStream fs2 = new FileStream(encryptedPDF,
FileMode.OpenOrCreate);

 //Create a BinaryWriter object
 BinaryWriter w = new BinaryWriter(fs2);
 w.Write(outByteArray);
 w.Close();
 fs2.Close();
 }
 catch (Exception ee)
 {
 Console.WriteLine(ee.Message);
 }
 }
 }
}

Quick Start: Invoking a service using Axis-generated files that use Base64
encoding

The following Java code example invokes a process named EncryptDocument using Axis-generated files
that use Base64 encoding. (See Invoking LiveCycle ES using Base64 Encoding.)

An unsecured PDF document based on a PDF file named map.pdf is passed to the LiveCycle ES process.
The process returns a password-encrypted PDF document that is saved as a PDF file named
mapEncrypt.pdf.

/*
 * This Java Quick Start uses axis generated Java files and
 * base64 encoding.)
 * For complete details,
 * see "Invoking LiveCycle ES using Base64 Encoding" in
 * Programming with LiveCycle ES
 */
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import com.adobe.idp.services.BLOB;
import com.adobe.idp.services.EncryptDocument;
import com.adobe.idp.services.EncryptDocumentServiceLocator;

public class InvokeDocumentEncryptBase64 {

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 39

public static void main(String[] args) {

try{

String pdfFile = "C:\\Adobe\\map.pdf";
 String encryptedPDF = "C:\\Adobe\\mapEncrypt.pdf";

//create a service locator
EncryptDocumentServiceLocator locate = new

EncryptDocumentServiceLocator();

//specify the service target URL and object type
EncryptDocument encryptionClient = locate.getEncryptDocument();

//Use the binding stub with the locator

((javax.xml.rpc.Stub)encryptionClient)._setProperty(javax.xml.rpc.Stub.USERN
AME_PROPERTY, "administrator");

((javax.xml.rpc.Stub)encryptionClient)._setProperty(javax.xml.rpc.Stub.PASSW
ORD_PROPERTY, "password");

 //Reference the PDF document to pass to the EncrptDocuemnt process
 FileInputStream file = new FileInputStream(pdfFile);

 //Create a byte array to store the PDF document
 int len = file.available();
 byte [] myByteArray = new byte[len];
 int i = 0;
 while (i < len) {
 i += file.read(myByteArray, i, len);
 }

//Create a BLOB object and populate it with the byte array
BLOB inDoc = new BLOB();
inDoc.setBinaryData(myByteArray);

//Invoke the EncryptDocument process
BLOB outDoc = encryptionClient.invoke(inDoc);

//Populate a byte array with the encrypted PDF document
byte[] myFile = outDoc.getBinaryData();

//Create a File object
File outFile = new File(encryptedPDF);

//Create a FileOutputStream object.
FileOutputStream myFileW = new FileOutputStream(outFile);

//Call the FileOutputStream object's write method and pass the pdf data
myFileW.write(myFile);

//Close the FileOutputStream object
myFileW.close();

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 40

}catch (Exception e) {
 e.printStackTrace();
}

}

}

Quick Start: Invoking the Repository service using LiveCycle Remoting

The following Flex code example adds a form design (an XDP file) to the repository by using LiveCycle
Remoting.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="*"
creationComplete="initializeChannelSet();">
 <mx:Script>
 <![CDATA[

 import mx.rpc.livecycle.DocumentReference;
 import flash.net.FileReference;
 import flash.events.Event;
 import flash.events.DataEvent;
 import mx.messaging.ChannelSet;
 import mx.messaging.channels.AMFChannel;
 import mx.rpc.events.ResultEvent;

 private var fileRef:FileReference = new FileReference();
 private var docRef:DocumentReference = new DocumentReference();
 private var parentResourcePath:String = "/";
 private var serverPort:String = "servername:8080";

 // Set up channel set to talk to LiveCycle.
 // This must be done before calling any service or process, but only once for
the entire application.
 // Note that this uses runtime configuration to configure the destination
correctly, so
 // no other setup is needed in remoting-config.xml.
 private function initializeChannelSet():void {
 var cs:ChannelSet= new ChannelSet();
 cs.addChannel(new AMFChannel("remoting-amf", "http://" + serverPort +
"/remoting/messagebroker/amf"));
 repositoryService.setCredentials("administrator", "password");
 repositoryService.channelSet = cs;
 }

 // Call this method to upload the file to be added to the repository.
 // This creates a file picker and lets the user select the file to upload.
 private function uploadFile():void {
 fileRef.addEventListener(Event.SELECT, selectHandler);
 fileRef.addEventListener(DataEvent.UPLOAD_COMPLETE_DATA,completeHandler);
 fileRef.browse();
 }

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 41

 // Gets called for selected file. Does the actual upload via our file upload
servlet.
 private function selectHandler(event:Event):void {
 var request:URLRequest = new URLRequest("http://" + serverPort +
"/remoting/lcfileupload");
 fileRef.upload(request);
 }

 // Called once the file is completely uploaded. Now it is safe to access that
object for other things.
 private function completeHandler(event:DataEvent):void {
 var params:Object = new Object();
 docRef.url = event.data as String;
 docRef.referenceType=DocumentReference.REF_TYPE_URL;
 // At this point we can do whatever we want with the file that has been
uploaded.
 // Our docRef variable has the object. Refer to the asdoc for
DocumentReference for methods and properties.
 // Note that the url is publicly accessible at this point. Useful for
testing purposes.
 writeResource();
 }

 // Uses RepositoryService API to write resource to repository. Sets the name
to "resource.xdp" right now.
 // Note that the destination name of the RemoteObject below is the Endpoint
name in the adminui.
 private function writeResource():void {
 var resource:Object = new Object();
 var content:Object = new Object();

 // define resource
 resource.name = "resource.xdp";
 content.dataDocument = docRef;
 content.mimeType = "application/vnd.adobe.xdp+xml";
 resource.content = content;
 resource.description = "An XDP File";

 // call to remote object

repositoryService.writeResource({"parentResourcePath":parentResourcePath,"re
source":resource});
 }

 private function resultHandler(event:ResultEvent):void {
 // Do anything else here.
 }

]]>
 </mx:Script>

 <mx:RemoteObject id="repositoryService" destination="RepositoryService"
result="resultHandler(event);"/>

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 42

 <mx:Panel id="lcPanel" title="Repository Service LiveCycle Remoting Example"
 height="25%" width="25%" paddingTop="10" paddingLeft="10"
paddingRight="10" paddingBottom="10">
 <mx:Label width="100%" color="blue"
 text="Select a PDF file. This example automatically uploads it to the
repository."/>
 <mx:Button label="Select and Upload" click="uploadFile()" />
 </mx:Panel>
</mx:Application>

Quick Start: Invoking a service using DIME in a .NET project

The following C# code example invokes a process named EncryptDocument from a Microsoft .NET project
using Dime. (See Invoking LiveCycle ES using DIME.)

An unsecured PDF document based on a PDF file named map.pdf is passed to the LiveCycle ES process
using DIME. The process returns a password-encrypted PDF document that is saved as a PDF file named
mapEncrypt.pdf.

/**
 *
 * Ensure that you create a .NET project that uses
 * Web Services Enhancements 2.0. This is required to send a
 * LiveCycle ES process an attachment using DIME.
 *
 * For information, see "Invoking LiveCycle ES using DIME" in Programming with
LiveCycle ES.
 */

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.IO;
using Microsoft.Web.Services2.Dime;
using Microsoft.Web.Services2.Attachments;
using Microsoft.Web.Services2.Configuration;
using Microsoft.Web.Services2;

//The following statement represents a web reference to
//the LiveCycle ES server that contains the process that
//is invoked
using ConsoleApplication1.LC_Host;

namespace ConsoleApplication1
{

 class InvokeEncryptDocumentUsingDime
 {

 const int BUFFER_SIZE = 4096;
 [STAThread]
 static void Main(string[] args)
 {

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 43

 try
 {
 String pdfFile = "C:\\Adobe\\map.pdf";
 String encryptedPDF = "C:\\Adobe\\mapEncrypt.pdf";

 //Create an EncryptDocumentServiceWse object and set
authentication values
 EncryptDocumentServiceWse encryptClient = new
EncryptDocumentServiceWse();
 encryptClient.Credentials = new
System.Net.NetworkCredential("administrator", "password");

 // Create the DIME attachment representing a PDF document
 DimeAttachment inputDocAttachment = new DimeAttachment(
 System.Guid.NewGuid().ToString(),
 "application/pdf",
 TypeFormat.MediaType,
 pdfFile);

 //Create a BLOB object
 BLOB inDoc = new BLOB();

 //Set the DIME attachment ID
 inDoc.attachmentID = inputDocAttachment.Id;

encryptClient.RequestSoapContext.Attachments.Add(inputDocAttachment);

 //Invoke the EncryptDocument process
 BLOB outDoc = encryptClient.invoke(inDoc);

 //Get the returned attachment identifier value
 String encryptedDocId = outDoc.attachmentID;
 FileStream myStream = new FileStream(encryptedPDF,
FileMode.Create, FileAccess.Write);

 //Iterate through the attachments
 foreach (Attachment attachment in
encryptClient.ResponseSoapContext.Attachments)
 {
 if (attachment.Id.Equals(encryptedDocId))
 {
 //Create a byte array that contains the encrypted PDF
document
 System.IO.Stream mySteam2 = attachment.Stream;
 byte[] myBytes = new byte[mySteam2.Length];
 int size = (int)mySteam2.Length;
 mySteam2.Read(myBytes, 0, size);

 //Save the encrypted PDF document as a PDF file
 FileStream fs2 = new FileStream(encryptedPDF,
FileMode.OpenOrCreate);

 //Create a BinaryWriter object
 BinaryWriter w = new BinaryWriter(fs2);
 w.Write(myBytes);

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 44

 w.Close();
 fs2.Close();
 Console.Out.WriteLine("Saved converted document at:" +
encryptedPDF);
 }
 }
 }
 catch (Exception ee)
 {
 Console.WriteLine(ee.Message);
 }
 }
 }
}

Quick Start: Invoking a service using DIME in a Java project

The following Java code example invokes a process named EncryptDocument using DIME. (See Invoking
LiveCycle ES using DIME.)

An unsecured PDF document based on a PDF file named Loan.pdf is passed to the LiveCycle ES process
using DIME. The process returns a password-encrypted PDF document that is saved as a PDF file named
EncryptLoan.pdf.

/**
 * Ensure that you create Java Axis files that
 * are required to send a LiveCycle ES process
 * an attachment using DIME.
 *
 * For information, see "Invoking LiveCycle ES using DIME" in Programming with
LiveCycle ES.
 */
import com.adobe.idp.services.*;
import java.io.File;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.net.URL;
import javax.activation.DataHandler;
import javax.activation.FileDataSource;

import org.apache.axis.attachments.AttachmentPart;

public class InvokeDocumentEncryptDime {
public static void main(String[] args) {

try{

//create a service locator
EncryptDocumentServiceLocator locate = new

EncryptDocumentServiceLocator();

//specify the service target URL and object type
URL serviceURL = new

URL("http://localhost:8080/soap/services/EncryptDocument?blob=dime");

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 45

//Use the binding stub with the locator
EncryptDocumentSoapBindingStub encryptionClientStub = new

EncryptDocumentSoapBindingStub(serviceURL,locate);
encryptionClientStub.setUsername("administrator");
encryptionClientStub.setPassword("password");

 //Get the DIME Attachments - which is the PDF document to encrypt
 java.io.File file = new java.io.File("C:\\Adobe\\Loan.pdf");

 //Create a DataHandler object
 DataHandler buildFile = new DataHandler(new FileDataSource(file));

 //Use the DataHandler object to create an AttachmentPart object
 AttachmentPart part = new AttachmentPart(buildFile);

//get the attachment ID
String attachmentID = part.getContentId();

//Add the attachment to the encryption service stub
encryptionClientStub.addAttachment(part);

//Inform ES where the attachment is stored by providing the attachment id
BLOB inDoc = new BLOB();
inDoc.setAttachmentID(attachmentID);

BLOB outDoc = encryptionClientStub.invoke(inDoc);

//Go through the returned attachments and get the encrypted PDF document
byte[] resultByte = null;
attachmentID = outDoc.getAttachmentID();

//Find the proper attachment
Object[] parts = encryptionClientStub.getAttachments();
for (int i=0;i<parts.length;i++){

AttachmentPart attPart = (AttachmentPart) parts[i];
if (attPart.getContentId().equals(attachmentID)) {

//DataHandler
buildFile = attPart.getDataHandler();
InputStream stream = buildFile.getInputStream();

byte[] pdfStream = new byte[stream.available()];
stream.read(pdfStream);

//Create a File object
File outFile = new File("C:\\Adobe\\EncryptLoan.pdf");

//Create a FileOutputStream object.
FileOutputStream myFileW = new FileOutputStream(outFile);

//Call the FileOutputStream object’s write method and pass the pdf
data

myFileW.write(pdfStream);

//Close the FileOutputStream object
myFileW.close();

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 46

}
}

}
catch(Exception e)
{

e.printStackTrace();
}
}

}

Quick Start: Invoking a service using BLOB data over HTTP in a Java project

The following Java code example invokes a process named EncryptDocument using data over HTTP. (See
Invoking LiveCycle ES using BLOB Data over HTTP.)

An unsecured PDF document based on a PDF file named Loan.pdf is passed to the LiveCycle ES process
using SOAP over HTTP. The process returns a password-encrypted PDF document that is saved as a PDF file
named EncryptLoan.pdf.

/*
 * This Java Quick Start uses axis generated Java files and
 * SOAP over HTTP.
 * For complete details,
 * see "Invoking LiveCycle ES using SOAP over HTTP" in
 * Programming with LiveCycle ES
 */
import java.io.File;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.net.URL;
import com.adobe.idp.services.BLOB;
import com.adobe.idp.services.EncryptDocument;
import com.adobe.idp.services.EncryptDocumentServiceLocator;

public class InvokeDocumentEncryptHTTP {

public static void main(String[] args) {

try{

//Create a service locator
EncryptDocumentServiceLocator locate = new

EncryptDocumentServiceLocator();

//Create an EncryptDocument object
EncryptDocument encryptionClient = locate.getEncryptDocument();

//Use the binding stub with the locator

((javax.xml.rpc.Stub)encryptionClient)._setProperty(javax.xml.rpc.Stub.USERN
AME_PROPERTY, "administrator");

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 47

((javax.xml.rpc.Stub)encryptionClient)._setProperty(javax.xml.rpc.Stub.PASSW
ORD_PROPERTY, "password");

//Create a BLOB object and populate it by invoking the setRemoteURL method
BLOB inDoc = new BLOB();
inDoc.setRemoteURL("http://localhost:8080/WebApplication/Loan.pdf");

//Invoke the EncryptDocument process
BLOB outDoc = encryptionClient.invoke(inDoc);

//Retrieve an InputStream from the returned BLOB instance
URL myURL = new URL(outDoc.getRemoteURL());
InputStream stream = myURL.openStream();

//Create a byte array and populate it with stream data
byte[] pdfStream = new byte[stream.available()];
int offset = 0;

 int remaining = stream.available();
 while (remaining > 0)
 {
 int read = stream.read(pdfStream , offset, remaining);
 remaining -= read;
 offset += read;
 }

//Create a File object
File outFile = new File("C:\\Adobe\\EncryptLoan.pdf");

//Create a FileOutputStream object.
FileOutputStream myFileW = new FileOutputStream(outFile);

//Call the FileOutputStream object’s write method and pass the pdf data
myFileW.write(pdfStream);

//Close the FileOutputStream object
myFileW.close();

}
catch(Exception e)
{

e.printStackTrace();
}

 }
}

Quick Start: Invoking a service using BLOB data over HTTP in a .NET project

The following C# code example invokes a process named EncryptDocument from a Microsoft .NET project
using data over HTTP. (See Invoking LiveCycle ES using BLOB Data over HTTP.)

An unsecured PDF document based on a PDF file named Loan.pdf is passed to the LiveCycle ES process
using SOAP over HTT. The process returns a password-encrypted PDF document that is saved as a PDF file
named EncryptedPDF.pdf.

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 48

/*
 * Ensure that you create a .NET client assembly that uses
 * SOAP over HTTP. This is required to populate a BLOB
 * object’s remote URL data memeber.
 *
 * For information, see "Invoking LiveCycle ES using SOAP over HTTP" in
 * Programming with LiveCycle ES
 */
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.IO;
using System.Security.Policy;

namespace ConsoleApplication1
{

 class InvokeEncryptDocumentUsingHTTP
 {

 const int BUFFER_SIZE = 4096;
 [STAThread]
 static void Main(string[] args)
 {

 try
 {
 String urlData =
"http://localhost:8080/WebApplication/Loan.pdf";

 //Create an EncryptDocumentServiceWse object and set
authentication values
 EncryptDocumentService encryptClient = new
EncryptDocumentService();
 encryptClient.Credentials = new
System.Net.NetworkCredential("administrator", "password");

 //Create a BLOB object
 BLOB inDoc = new BLOB();

 //Populate the BLOB object’s remoteURL data member
 inDoc.remoteURL = urlData;

 //Invoke the EncryptDocument process
 BLOB outDoc = encryptClient.invoke(inDoc);

 //Create a UriBuilder object using the
 //BLOB object’s remoteURL data member field
 UriBuilder uri = new UriBuilder(outDoc.remoteURL);

 //Convert the UriBuilder to a Stream object
 System.Net.WebRequest wr =
System.Net.WebRequest.Create(uri.Uri);
 System.Net.WebResponse response = wr.GetResponse();

<<Define the ProductName variable>> Invocation API Quick Starts
<<Define the GuideName variable>> 49

 System.IO.StreamReader sr = new
System.IO.StreamReader(response.GetResponseStream());
 Stream mySteam = sr.BaseStream;

 //Create a byte array
 byte[] myData = new byte[BUFFER_SIZE];

 //Populate the byte array
 PopulateArray(mySteam, myData);

 //Create a new file named UsageRightsLoan.pdf
 FileStream fs2 = new FileStream("C:\\Adobe\\EncryptedPDF.pdf",
FileMode.OpenOrCreate);

 //Create a BinaryWriter object
 BinaryWriter w = new BinaryWriter(fs2);
 w.Write(myData);
 w.Close();
 fs2.Close();
 }
 catch (Exception ee)
 {
 Console.WriteLine(ee.Message);
 }
 }

 public static void PopulateArray(Stream stream, byte[] data)
 {
 int offset = 0;
 int remaining = data.Length;
 while (remaining > 0)
 {
 int read = stream.Read(data, offset, remaining);
 if (read <= 0)
 throw new EndOfStreamException();
 remaining -= read;
 offset += read;
 }
 }

 }
}

	Invoking LiveCycle ES Using Web Services
	Invoking LiveCycle ES using Base64 Encoding
	Creating a .NET client assembly that uses base 64 encoding
	Creating a proxy class
	Developing the .NET client assembly
	Referencing the .NET client assembly

	Invoking a service using a .NET client assembly that uses base64 encoding

	Creating Java proxy classes using Apache Axis that uses encoding
	Generating Axis library files
	Invoking a service using Axis-generated library files that use base64 encoding

	Invoking LiveCycle ES using DIME
	Creating a .NET project that uses DIME
	Installing Web Services Enhancements 2.0
	Creating a web reference to a LiveCycle ES service
	Invoking a service using DIME in a .NET project

	Creating Java proxy classes using Apache Axis that uses DIME

	Invoking LiveCycle ES using BLOB Data over HTTP
	Creating a .NET client assembly that uses data over HTTP
	Referencing the .NET client assembly
	Invoking a service using a .NET client assembly that uses BLOB data over HTTP

	Creating Java proxy classes using Apache Axis that uses BLOB data over HTTP

	Invoking Long-Lived Processes
	Summary of steps
	Invoking a long-lived process using the Java invocation API
	Invoking a long-lived process using the web service API
	Invoking a long-lived process using LiveCycle Remoting

	Invocation API Quick Starts
	Quick Start: Invoking a long-lived process using the Invocation API
	Quick Start: Invoking a long-lived process using the web service API
	Quick Start: Invoking a long-lived process using LiveCycle Remoting
	Quick Start: Invoking the Repository service using a Java client library
	Quick Start: Invoking a service using base64 in a Microsoft .NET project
	Quick Start: Invoking a service using Axis-generated files that use Base64 encoding
	Quick Start: Invoking the Repository service using LiveCycle Remoting
	Quick Start: Invoking a service using DIME in a .NET project
	Quick Start: Invoking a service using DIME in a Java project
	Quick Start: Invoking a service using BLOB data over HTTP in a Java project
	Quick Start: Invoking a service using BLOB data over HTTP in a .NET project

